Wei Zhai, Lin Wang, Shuai Chu, Lei Ding, Jie Li, Haichao Chen and Zhengbo Jiao
{"title":"协同增强光电化学水分离活性的层间Ag纳米粒子锚定Mo、W:BVO/NiCo2O4异质结","authors":"Wei Zhai, Lin Wang, Shuai Chu, Lei Ding, Jie Li, Haichao Chen and Zhengbo Jiao","doi":"10.1039/D4CE00082J","DOIUrl":null,"url":null,"abstract":"<p >Spinel oxide NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> is introduced as an emerging material for photocatalytic oxygen precipitating catalysts. The NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> hollow spheres prepared using the template method combine a large specific surface area with high electrical conductivity and exhibit excellent catalytic properties. Building on this significant improvement, our research aims to enhance the photoelectrochemical performance of Mo,W:BVO/NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> heterojunctions by integrating hollow NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> during BiVO<small><sub>4</sub></small> fabrication, thereby improving the charge transfer and water oxidation kinetics of Mo,W:BVO/NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> photoanodes. Additionally, the deposition of Ag as a middle layer prevents oxidation issues during the PEC process, resulting in the most significant enhancement of photocurrent. Compared to a reversible hydrogen electrode, the obtained photoanodes achieve a photocurrent density of 5.30 mA cm<small><sup>−2</sup></small> at 1.23 V <em>vs.</em> RHE. Through experimental and theoretical demonstrations, our work provides novel insights into modifying BiVO<small><sub>4</sub></small> photoanodes using oxygen precipitating catalysts and noble metals to improve their photoelectrochemical performance.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 21","pages":" 2829-2835"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interlayer Ag nanoparticle-anchored Mo,W:BVO/NiCo2O4 heterojunctions for the synergistic enhancement of photoelectrochemical water splitting activity†\",\"authors\":\"Wei Zhai, Lin Wang, Shuai Chu, Lei Ding, Jie Li, Haichao Chen and Zhengbo Jiao\",\"doi\":\"10.1039/D4CE00082J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Spinel oxide NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> is introduced as an emerging material for photocatalytic oxygen precipitating catalysts. The NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> hollow spheres prepared using the template method combine a large specific surface area with high electrical conductivity and exhibit excellent catalytic properties. Building on this significant improvement, our research aims to enhance the photoelectrochemical performance of Mo,W:BVO/NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> heterojunctions by integrating hollow NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> during BiVO<small><sub>4</sub></small> fabrication, thereby improving the charge transfer and water oxidation kinetics of Mo,W:BVO/NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> photoanodes. Additionally, the deposition of Ag as a middle layer prevents oxidation issues during the PEC process, resulting in the most significant enhancement of photocurrent. Compared to a reversible hydrogen electrode, the obtained photoanodes achieve a photocurrent density of 5.30 mA cm<small><sup>−2</sup></small> at 1.23 V <em>vs.</em> RHE. Through experimental and theoretical demonstrations, our work provides novel insights into modifying BiVO<small><sub>4</sub></small> photoanodes using oxygen precipitating catalysts and noble metals to improve their photoelectrochemical performance.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 21\",\"pages\":\" 2829-2835\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00082j\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00082j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
尖晶石氧化物(NiCo2O4)作为一种新兴的光催化析氧催化剂材料被引入。通过模板法制备的镍钴氧化物空心球兼具大比表面积和高导电性,具有优异的催化性能。在这一重大改进的基础上,我们的研究旨在通过在 BiVO4 制备过程中集成空心镍钴氧化物来提高 Mo、W:BVO/镍钴氧化物异质结的光电化学性能,从而改善 Mo、W:BVO/镍钴氧化物光阳极的电荷转移和水氧化动力学。此外,中间层的银沉积避免了 PEC 过程中的氧化问题,从而最显著地提高了光电流。与可逆氢电极相比,所获得的光阳极在 1.23 V 对 RHE 时的光电流密度达到了 5.30 mA cm-2。通过实验和理论论证,我们的工作为利用析氧催化剂和贵金属改性 BiVO4 光阳极以提高其光电化学性能提供了新的见解。
Interlayer Ag nanoparticle-anchored Mo,W:BVO/NiCo2O4 heterojunctions for the synergistic enhancement of photoelectrochemical water splitting activity†
Spinel oxide NiCo2O4 is introduced as an emerging material for photocatalytic oxygen precipitating catalysts. The NiCo2O4 hollow spheres prepared using the template method combine a large specific surface area with high electrical conductivity and exhibit excellent catalytic properties. Building on this significant improvement, our research aims to enhance the photoelectrochemical performance of Mo,W:BVO/NiCo2O4 heterojunctions by integrating hollow NiCo2O4 during BiVO4 fabrication, thereby improving the charge transfer and water oxidation kinetics of Mo,W:BVO/NiCo2O4 photoanodes. Additionally, the deposition of Ag as a middle layer prevents oxidation issues during the PEC process, resulting in the most significant enhancement of photocurrent. Compared to a reversible hydrogen electrode, the obtained photoanodes achieve a photocurrent density of 5.30 mA cm−2 at 1.23 V vs. RHE. Through experimental and theoretical demonstrations, our work provides novel insights into modifying BiVO4 photoanodes using oxygen precipitating catalysts and noble metals to improve their photoelectrochemical performance.