论利用概率规则建立具有不确定信息的多标准决策模型

Shengxin Hong, Xiuyi Fan
{"title":"论利用概率规则建立具有不确定信息的多标准决策模型","authors":"Shengxin Hong, Xiuyi Fan","doi":"arxiv-2404.13419","DOIUrl":null,"url":null,"abstract":"Decision-making processes often involve dealing with uncertainty, which is\ntraditionally addressed through probabilistic models. However, in practical\nscenarios, assessing probabilities reliably can be challenging, compounded by\ndiverse perceptions of probabilistic information among decision makers. To\naddress this variability and accommodate diverse preferences regarding\nuncertainty, we introduce the Probabilistic Abstract Decision Framework (PADF).\nPADF offers a structured approach for reasoning across different decision\ncriteria, encompassing the optimistic, pessimistic, and Laplace perspectives,\neach tailored to distinct perceptions of uncertainty. We illustrate how PADF\nfacilitates the computation of optimal decisions aligned with these criteria by\nleveraging probabilistic rules. Furthermore, we present strategies for\noptimizing the computational efficiency of these rules, leveraging appropriate\nindependence assumptions to navigate the extensive search space inherent in\nPADF. Through these contributions, our framework provides a robust and\nadaptable tool for effectively navigating the complexities of decision-making\nunder uncertainty.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Modeling Multi-Criteria Decision Making with Uncertain Information using Probabilistic Rules\",\"authors\":\"Shengxin Hong, Xiuyi Fan\",\"doi\":\"arxiv-2404.13419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision-making processes often involve dealing with uncertainty, which is\\ntraditionally addressed through probabilistic models. However, in practical\\nscenarios, assessing probabilities reliably can be challenging, compounded by\\ndiverse perceptions of probabilistic information among decision makers. To\\naddress this variability and accommodate diverse preferences regarding\\nuncertainty, we introduce the Probabilistic Abstract Decision Framework (PADF).\\nPADF offers a structured approach for reasoning across different decision\\ncriteria, encompassing the optimistic, pessimistic, and Laplace perspectives,\\neach tailored to distinct perceptions of uncertainty. We illustrate how PADF\\nfacilitates the computation of optimal decisions aligned with these criteria by\\nleveraging probabilistic rules. Furthermore, we present strategies for\\noptimizing the computational efficiency of these rules, leveraging appropriate\\nindependence assumptions to navigate the extensive search space inherent in\\nPADF. Through these contributions, our framework provides a robust and\\nadaptable tool for effectively navigating the complexities of decision-making\\nunder uncertainty.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.13419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.13419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

决策过程往往涉及不确定性的处理,传统上是通过概率模型来解决的。然而,在实际场景中,可靠地评估概率可能具有挑战性,而决策者对概率信息的不同看法又加剧了这种挑战性。PADF 为不同决策标准的推理提供了一种结构化方法,包括乐观、悲观和拉普拉斯视角,每种视角都针对不同的不确定性感知。我们说明了 PADF 如何通过利用概率规则来计算符合这些标准的最优决策。此外,我们还提出了优化这些规则计算效率的策略,利用适当的独立性假设来引导 PADF 固有的广泛搜索空间。通过这些贡献,我们的框架为有效驾驭不确定性下的复杂决策提供了一个稳健且可适应的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Modeling Multi-Criteria Decision Making with Uncertain Information using Probabilistic Rules
Decision-making processes often involve dealing with uncertainty, which is traditionally addressed through probabilistic models. However, in practical scenarios, assessing probabilities reliably can be challenging, compounded by diverse perceptions of probabilistic information among decision makers. To address this variability and accommodate diverse preferences regarding uncertainty, we introduce the Probabilistic Abstract Decision Framework (PADF). PADF offers a structured approach for reasoning across different decision criteria, encompassing the optimistic, pessimistic, and Laplace perspectives, each tailored to distinct perceptions of uncertainty. We illustrate how PADF facilitates the computation of optimal decisions aligned with these criteria by leveraging probabilistic rules. Furthermore, we present strategies for optimizing the computational efficiency of these rules, leveraging appropriate independence assumptions to navigate the extensive search space inherent in PADF. Through these contributions, our framework provides a robust and adaptable tool for effectively navigating the complexities of decision-making under uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信