解决马纳科夫模型反向散射问题的算法

Pub Date : 2024-04-22 DOI:10.1134/s0965542524030059
O. V. Belai, L. L. Frumin, A. E. Chernyavsky
{"title":"解决马纳科夫模型反向散射问题的算法","authors":"O. V. Belai, L. L. Frumin, A. E. Chernyavsky","doi":"10.1134/s0965542524030059","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper considers algorithms for solving inverse scattering problems based on the discretization of the Gelfand–Levitan–Marchenko integral equations, associated with the system of nonlinear Schrödinger equations of the Manakov model. The numerical algorithm of the first order approximation for solving the scattering problem is reduced to the inversion of a series of nested block Toeplitz matrices using the Levinson-type bordering method. Increasing the approximation accuracy violates the Toeplitz structure of block matrices. Two algorithms are described that solve this problem for second order accuracy. One algorithm uses a block version of the Levinson bordering algorithm, which recovers the Toeplitz structure of the matrix by moving some terms of the systems of equations to the right-hand side. Another algorithm is based on the Toeplitz decomposition of an almost block-Toeplitz matrix and the Tyrtyshnikov bordering algorithm. The speed and accuracy of calculations using the presented algorithms are compared on an exact solution (the Manakov vector soliton).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms for Solving the Inverse Scattering Problem for the Manakov Model\",\"authors\":\"O. V. Belai, L. L. Frumin, A. E. Chernyavsky\",\"doi\":\"10.1134/s0965542524030059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The paper considers algorithms for solving inverse scattering problems based on the discretization of the Gelfand–Levitan–Marchenko integral equations, associated with the system of nonlinear Schrödinger equations of the Manakov model. The numerical algorithm of the first order approximation for solving the scattering problem is reduced to the inversion of a series of nested block Toeplitz matrices using the Levinson-type bordering method. Increasing the approximation accuracy violates the Toeplitz structure of block matrices. Two algorithms are described that solve this problem for second order accuracy. One algorithm uses a block version of the Levinson bordering algorithm, which recovers the Toeplitz structure of the matrix by moving some terms of the systems of equations to the right-hand side. Another algorithm is based on the Toeplitz decomposition of an almost block-Toeplitz matrix and the Tyrtyshnikov bordering algorithm. The speed and accuracy of calculations using the presented algorithms are compared on an exact solution (the Manakov vector soliton).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524030059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524030059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文研究了基于格尔芬-列维坦-马琴科积分方程离散化的反向散射问题求解算法,该算法与马纳科夫模型的非线性薛定谔方程组相关联。解决散射问题的一阶近似数值算法简化为使用列文森型边界法对一系列嵌套块托普利兹矩阵进行反演。提高近似精度会破坏块矩阵的托普利兹结构。本文介绍了两种以二阶精度解决这一问题的算法。其中一种算法使用的是莱文森接壤算法的分块版本,通过将方程组的某些项移动到右侧来恢复矩阵的托普利兹结构。另一种算法基于近似块-托普利兹矩阵的托普利兹分解和 Tyrtyshnikov 边界算法。在一个精确解(马纳科夫矢量孤子)上比较了使用所介绍算法的计算速度和精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Algorithms for Solving the Inverse Scattering Problem for the Manakov Model

分享
查看原文
Algorithms for Solving the Inverse Scattering Problem for the Manakov Model

Abstract

The paper considers algorithms for solving inverse scattering problems based on the discretization of the Gelfand–Levitan–Marchenko integral equations, associated with the system of nonlinear Schrödinger equations of the Manakov model. The numerical algorithm of the first order approximation for solving the scattering problem is reduced to the inversion of a series of nested block Toeplitz matrices using the Levinson-type bordering method. Increasing the approximation accuracy violates the Toeplitz structure of block matrices. Two algorithms are described that solve this problem for second order accuracy. One algorithm uses a block version of the Levinson bordering algorithm, which recovers the Toeplitz structure of the matrix by moving some terms of the systems of equations to the right-hand side. Another algorithm is based on the Toeplitz decomposition of an almost block-Toeplitz matrix and the Tyrtyshnikov bordering algorithm. The speed and accuracy of calculations using the presented algorithms are compared on an exact solution (the Manakov vector soliton).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信