{"title":"不同形状凹槽管道中的流场和传热特性","authors":"Sajida Lafta Ghashim","doi":"10.31185/ejuow.vol12.iss2.515","DOIUrl":null,"url":null,"abstract":"In this work, a numerical study of a thermal performance of water flow inside a dimpled pipe. The effect of three types of dimples (circular, square and rhombus) studied in the numerical simulation. A commercial program called ANSYS was used to model the flow through a circular pipe .The three-dimensional governing differential equations of mass, momentum, and energy were used together with the (K − ε ) model to evaluate the impact of dimples on a turbulent flow and the velocity field. The study was carried out in the Reynolds number (Re) range (2500–15000). The research results demonstrate that the presence of a dimple on the pipe surface greatly increases the rate of heat transmission and the friction factor compared to a normal smooth pipe. Also, the numerical study demonstrated that the Nusselt number (Nu) in case of circular dimples at diameter (4 , 6 and 8) mm was (22, 28 and 43) % greater than the smooth surface. It is discovered that the improved pipe with circular dimples have a benefit for increased heat transmission efficiency compared with the square and rhombus dimples. Additionally , circular dimples have the ability to supply the lowest friction factor (f) when compared to other types of dimple. The pipe with circular dimples with D= 4mm , at Reynolds number 2500 provided the largest thermal performance criterion (PEC) value about 1.44.","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"48 48","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow field and heat transfer characteristics in dimple pipe with different shape of dimples\",\"authors\":\"Sajida Lafta Ghashim\",\"doi\":\"10.31185/ejuow.vol12.iss2.515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a numerical study of a thermal performance of water flow inside a dimpled pipe. The effect of three types of dimples (circular, square and rhombus) studied in the numerical simulation. A commercial program called ANSYS was used to model the flow through a circular pipe .The three-dimensional governing differential equations of mass, momentum, and energy were used together with the (K − ε ) model to evaluate the impact of dimples on a turbulent flow and the velocity field. The study was carried out in the Reynolds number (Re) range (2500–15000). The research results demonstrate that the presence of a dimple on the pipe surface greatly increases the rate of heat transmission and the friction factor compared to a normal smooth pipe. Also, the numerical study demonstrated that the Nusselt number (Nu) in case of circular dimples at diameter (4 , 6 and 8) mm was (22, 28 and 43) % greater than the smooth surface. It is discovered that the improved pipe with circular dimples have a benefit for increased heat transmission efficiency compared with the square and rhombus dimples. Additionally , circular dimples have the ability to supply the lowest friction factor (f) when compared to other types of dimple. The pipe with circular dimples with D= 4mm , at Reynolds number 2500 provided the largest thermal performance criterion (PEC) value about 1.44.\",\"PeriodicalId\":184256,\"journal\":{\"name\":\"Wasit Journal of Engineering Sciences\",\"volume\":\"48 48\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wasit Journal of Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31185/ejuow.vol12.iss2.515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/ejuow.vol12.iss2.515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flow field and heat transfer characteristics in dimple pipe with different shape of dimples
In this work, a numerical study of a thermal performance of water flow inside a dimpled pipe. The effect of three types of dimples (circular, square and rhombus) studied in the numerical simulation. A commercial program called ANSYS was used to model the flow through a circular pipe .The three-dimensional governing differential equations of mass, momentum, and energy were used together with the (K − ε ) model to evaluate the impact of dimples on a turbulent flow and the velocity field. The study was carried out in the Reynolds number (Re) range (2500–15000). The research results demonstrate that the presence of a dimple on the pipe surface greatly increases the rate of heat transmission and the friction factor compared to a normal smooth pipe. Also, the numerical study demonstrated that the Nusselt number (Nu) in case of circular dimples at diameter (4 , 6 and 8) mm was (22, 28 and 43) % greater than the smooth surface. It is discovered that the improved pipe with circular dimples have a benefit for increased heat transmission efficiency compared with the square and rhombus dimples. Additionally , circular dimples have the ability to supply the lowest friction factor (f) when compared to other types of dimple. The pipe with circular dimples with D= 4mm , at Reynolds number 2500 provided the largest thermal performance criterion (PEC) value about 1.44.