脊髓运动电路混合中央模式发生器中的稀疏点火功能

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Beck Strohmer;Elias Najarro;Jessica Ausborn;Rune W. Berg;Silvia Tolu
{"title":"脊髓运动电路混合中央模式发生器中的稀疏点火功能","authors":"Beck Strohmer;Elias Najarro;Jessica Ausborn;Rune W. Berg;Silvia Tolu","doi":"10.1162/neco_a_01660","DOIUrl":null,"url":null,"abstract":"Central pattern generators are circuits generating rhythmic movements, such as walking. The majority of existing computational models of these circuits produce antagonistic output where all neurons within a population spike with a broad burst at about the same neuronal phase with respect to network output. However, experimental recordings reveal that many neurons within these circuits fire sparsely, sometimes as rarely as once within a cycle. Here we address the sparse neuronal firing and develop a model to replicate the behavior of individual neurons within rhythm-generating populations to increase biological plausibility and facilitate new insights into the underlying mechanisms of rhythm generation. The developed network architecture is able to produce sparse firing of individual neurons, creating a novel implementation for exploring the contribution of network architecture on rhythmic output. Furthermore, the introduction of sparse firing of individual neurons within the rhythm-generating circuits is one of the factors that allows for a broad neuronal phase representation of firing at the population level. This moves the model toward recent experimental findings of evenly distributed neuronal firing across phases among individual spinal neurons. The network is tested by methodically iterating select parameters to gain an understanding of how connectivity and the interplay of excitation and inhibition influence the output. This knowledge can be applied in future studies to implement a biologically plausible rhythm-generating circuit for testing biological hypotheses.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 5","pages":"759-780"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10535063","citationCount":"0","resultStr":"{\"title\":\"Sparse Firing in a Hybrid Central Pattern Generator for Spinal Motor Circuits\",\"authors\":\"Beck Strohmer;Elias Najarro;Jessica Ausborn;Rune W. Berg;Silvia Tolu\",\"doi\":\"10.1162/neco_a_01660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Central pattern generators are circuits generating rhythmic movements, such as walking. The majority of existing computational models of these circuits produce antagonistic output where all neurons within a population spike with a broad burst at about the same neuronal phase with respect to network output. However, experimental recordings reveal that many neurons within these circuits fire sparsely, sometimes as rarely as once within a cycle. Here we address the sparse neuronal firing and develop a model to replicate the behavior of individual neurons within rhythm-generating populations to increase biological plausibility and facilitate new insights into the underlying mechanisms of rhythm generation. The developed network architecture is able to produce sparse firing of individual neurons, creating a novel implementation for exploring the contribution of network architecture on rhythmic output. Furthermore, the introduction of sparse firing of individual neurons within the rhythm-generating circuits is one of the factors that allows for a broad neuronal phase representation of firing at the population level. This moves the model toward recent experimental findings of evenly distributed neuronal firing across phases among individual spinal neurons. The network is tested by methodically iterating select parameters to gain an understanding of how connectivity and the interplay of excitation and inhibition influence the output. This knowledge can be applied in future studies to implement a biologically plausible rhythm-generating circuit for testing biological hypotheses.\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\"36 5\",\"pages\":\"759-780\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10535063\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10535063/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10535063/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要 中枢模式发生器是产生有节奏运动(如行走)的电路。这些回路的大多数现有计算模型都会产生拮抗输出,即群体中的所有神经元都会在与网络输出大致相同的神经元相位上以宽泛的爆发式尖峰输出。然而,实验记录显示,这些回路中的许多神经元会稀疏地发射,有时在一个周期内仅发射一次。在此,我们针对神经元发射稀疏的问题,建立了一个模型,以复制节奏产生群体中单个神经元的行为,从而提高生物合理性,并促进对节奏产生内在机制的新认识。所开发的网络架构能够产生单个神经元的稀疏发射,为探索网络架构对节奏输出的贡献提供了一种新的实现方式。此外,在节奏产生回路中引入单个神经元的稀疏发射,也是允许在群体水平上对发射进行广泛神经元相位表征的因素之一。这使得该模型趋向于最近的实验结果,即单个脊髓神经元在不同阶段均匀分布神经元发射。通过有条不紊地反复选择参数对网络进行测试,以了解连通性以及兴奋和抑制的相互作用如何影响输出。这些知识可应用于未来的研究,以实现生物上合理的节律产生电路,从而检验生物学假说。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Firing in a Hybrid Central Pattern Generator for Spinal Motor Circuits
Central pattern generators are circuits generating rhythmic movements, such as walking. The majority of existing computational models of these circuits produce antagonistic output where all neurons within a population spike with a broad burst at about the same neuronal phase with respect to network output. However, experimental recordings reveal that many neurons within these circuits fire sparsely, sometimes as rarely as once within a cycle. Here we address the sparse neuronal firing and develop a model to replicate the behavior of individual neurons within rhythm-generating populations to increase biological plausibility and facilitate new insights into the underlying mechanisms of rhythm generation. The developed network architecture is able to produce sparse firing of individual neurons, creating a novel implementation for exploring the contribution of network architecture on rhythmic output. Furthermore, the introduction of sparse firing of individual neurons within the rhythm-generating circuits is one of the factors that allows for a broad neuronal phase representation of firing at the population level. This moves the model toward recent experimental findings of evenly distributed neuronal firing across phases among individual spinal neurons. The network is tested by methodically iterating select parameters to gain an understanding of how connectivity and the interplay of excitation and inhibition influence the output. This knowledge can be applied in future studies to implement a biologically plausible rhythm-generating circuit for testing biological hypotheses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信