利用数据驱动的模型预测控制,最大限度降低半连续蒸馏工艺处理每吨原料的年化总成本

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Sakthi Prasanth Aenugula , Aswin Chandrasekar , Prashant Mhaskar , Thomas A. Adams II
{"title":"利用数据驱动的模型预测控制,最大限度降低半连续蒸馏工艺处理每吨原料的年化总成本","authors":"Sakthi Prasanth Aenugula ,&nbsp;Aswin Chandrasekar ,&nbsp;Prashant Mhaskar ,&nbsp;Thomas A. Adams II","doi":"10.1016/j.compchemeng.2024.108711","DOIUrl":null,"url":null,"abstract":"<div><p>Semicontinuous distillation is a separation technique used to purify multicomponent mixtures with low to medium throughput. This research addresses the problem of designing a Data-driven Model Predictive Control (MPC) approach that enables minimizing the Total Annualized Cost (TAC) of the semicontinuous process per tonne of feed processed while maintaining the required product purity. In lieu of typically unavailable first principles models, the manuscript demonstrates the implementation of data-driven technique using data collected from an Aspen Plus Dynamics simulation as a test bed. A subspace model identification technique is adapted to develop a multi-model framework to capture the dynamic behavior of the process and then utilized within a Shrinking Horizon MPC (SHMPC) scheme, to achieve the required objective. The simulation results demonstrate a lowering of the TAC/tonne of feed by 11.4% compared to the traditional PI setup used in the previous studies.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098135424001297/pdfft?md5=a0ae74447c691592fb70567e77482008&pid=1-s2.0-S0098135424001297-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Minimizing total annualized cost per tonne of feed processed of a semicontinuous distillation process utilizing data-driven model predictive control\",\"authors\":\"Sakthi Prasanth Aenugula ,&nbsp;Aswin Chandrasekar ,&nbsp;Prashant Mhaskar ,&nbsp;Thomas A. Adams II\",\"doi\":\"10.1016/j.compchemeng.2024.108711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Semicontinuous distillation is a separation technique used to purify multicomponent mixtures with low to medium throughput. This research addresses the problem of designing a Data-driven Model Predictive Control (MPC) approach that enables minimizing the Total Annualized Cost (TAC) of the semicontinuous process per tonne of feed processed while maintaining the required product purity. In lieu of typically unavailable first principles models, the manuscript demonstrates the implementation of data-driven technique using data collected from an Aspen Plus Dynamics simulation as a test bed. A subspace model identification technique is adapted to develop a multi-model framework to capture the dynamic behavior of the process and then utilized within a Shrinking Horizon MPC (SHMPC) scheme, to achieve the required objective. The simulation results demonstrate a lowering of the TAC/tonne of feed by 11.4% compared to the traditional PI setup used in the previous studies.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0098135424001297/pdfft?md5=a0ae74447c691592fb70567e77482008&pid=1-s2.0-S0098135424001297-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424001297\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424001297","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

半连续蒸馏是一种分离技术,用于提纯中低产量的多组分混合物。这项研究解决的问题是设计一种数据驱动的模型预测控制 (MPC) 方法,使半连续工艺每处理一吨原料的年化总成本 (TAC) 最小化,同时保持所需的产品纯度。手稿使用从 Aspen Plus Dynamics 仿真中收集的数据作为测试平台,展示了数据驱动技术的实施,以取代通常不可用的第一原理模型。采用子空间模型识别技术来开发多模型框架,以捕捉工艺的动态行为,然后在收缩地平线 MPC (SHMPC) 方案中加以利用,以实现所需的目标。模拟结果表明,与之前研究中使用的传统 PI 设置相比,每吨进料的 TAC 降低了 11.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimizing total annualized cost per tonne of feed processed of a semicontinuous distillation process utilizing data-driven model predictive control

Semicontinuous distillation is a separation technique used to purify multicomponent mixtures with low to medium throughput. This research addresses the problem of designing a Data-driven Model Predictive Control (MPC) approach that enables minimizing the Total Annualized Cost (TAC) of the semicontinuous process per tonne of feed processed while maintaining the required product purity. In lieu of typically unavailable first principles models, the manuscript demonstrates the implementation of data-driven technique using data collected from an Aspen Plus Dynamics simulation as a test bed. A subspace model identification technique is adapted to develop a multi-model framework to capture the dynamic behavior of the process and then utilized within a Shrinking Horizon MPC (SHMPC) scheme, to achieve the required objective. The simulation results demonstrate a lowering of the TAC/tonne of feed by 11.4% compared to the traditional PI setup used in the previous studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信