自验证集合模型(SVEM)的随机置换整体模型测试启发式

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS
Andrew T. Karl
{"title":"自验证集合模型(SVEM)的随机置换整体模型测试启发式","authors":"Andrew T. Karl","doi":"10.1016/j.chemolab.2024.105122","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a heuristic to test the significance of fit of Self-Validated Ensemble Models (SVEM) against the null hypothesis of a constant response. A SVEM model averages predictions from <em>nBoot</em> fits of a model, applied to fractionally weighted bootstraps of the target dataset. It tunes each fit on a validation copy of the training data, utilizing anti-correlated weights for training and validation. The proposed test computes SVEM predictions centered by the response column mean and normalized by the ensemble variability at each of <span><math><mrow><mi>n</mi><mi>P</mi><mi>o</mi><mi>i</mi><mi>n</mi><mi>t</mi></mrow></math></span> points spaced throughout the factor space. A reference distribution is constructed by refitting the SVEM model to <em>nPerm</em> randomized permutations of the response column and recording the corresponding standardized predictions at the <span><math><mrow><mi>n</mi><mi>P</mi><mi>o</mi><mi>i</mi><mi>n</mi><mi>t</mi></mrow></math></span> points. A reduced-rank singular value decomposition applied to the centered and scaled <span><math><mrow><mi>n</mi><mi>P</mi><mi>e</mi><mi>r</mi><mi>m</mi><mo>×</mo><mi>n</mi><mi>P</mi><mi>o</mi><mi>i</mi><mi>n</mi><mi>t</mi></mrow></math></span> reference matrix is used to calculate the Mahalanobis distance for each of the <em>nPerm</em> permutation results as well as the jackknife (holdout) Mahalanobis distance of the original response column. The process is repeated independently for each response in the experiment, producing a joint graphical summary. We present a simulation driven power analysis and discuss limitations of the test relating to model flexibility and design adequacy. The test maintains the nominal Type I error rate even when the base SVEM model contains more parameters than observations.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"249 ","pages":"Article 105122"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A randomized permutation whole-model test heuristic for Self-Validated Ensemble Models (SVEM)\",\"authors\":\"Andrew T. Karl\",\"doi\":\"10.1016/j.chemolab.2024.105122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a heuristic to test the significance of fit of Self-Validated Ensemble Models (SVEM) against the null hypothesis of a constant response. A SVEM model averages predictions from <em>nBoot</em> fits of a model, applied to fractionally weighted bootstraps of the target dataset. It tunes each fit on a validation copy of the training data, utilizing anti-correlated weights for training and validation. The proposed test computes SVEM predictions centered by the response column mean and normalized by the ensemble variability at each of <span><math><mrow><mi>n</mi><mi>P</mi><mi>o</mi><mi>i</mi><mi>n</mi><mi>t</mi></mrow></math></span> points spaced throughout the factor space. A reference distribution is constructed by refitting the SVEM model to <em>nPerm</em> randomized permutations of the response column and recording the corresponding standardized predictions at the <span><math><mrow><mi>n</mi><mi>P</mi><mi>o</mi><mi>i</mi><mi>n</mi><mi>t</mi></mrow></math></span> points. A reduced-rank singular value decomposition applied to the centered and scaled <span><math><mrow><mi>n</mi><mi>P</mi><mi>e</mi><mi>r</mi><mi>m</mi><mo>×</mo><mi>n</mi><mi>P</mi><mi>o</mi><mi>i</mi><mi>n</mi><mi>t</mi></mrow></math></span> reference matrix is used to calculate the Mahalanobis distance for each of the <em>nPerm</em> permutation results as well as the jackknife (holdout) Mahalanobis distance of the original response column. The process is repeated independently for each response in the experiment, producing a joint graphical summary. We present a simulation driven power analysis and discuss limitations of the test relating to model flexibility and design adequacy. The test maintains the nominal Type I error rate even when the base SVEM model contains more parameters than observations.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"249 \",\"pages\":\"Article 105122\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924000625\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924000625","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种启发式方法来测试自验证集合模型(SVEM)与恒定响应零假设的拟合显著性。SVEM 模型对模型的 nBoot 拟合预测进行平均,并应用于目标数据集的分数加权 bootstraps。它在训练数据的验证副本上调整每个拟合,利用反相关权重进行训练和验证。建议的测试以响应列平均值为中心计算 SVEM 预测值,并以整个因子空间中间隔的 n 个点的集合变异性进行归一化。通过对响应列的 nPerm 随机排列重新拟合 SVEM 模型,并记录 nPoint 点上相应的标准化预测值,从而构建参考分布。对 nPerm×nPoint 参考矩阵进行居中和按比例缩减的秩奇异值分解,用于计算 nPerm 每种排列结果的 Mahalanobis 距离,以及原始响应列的 jackknife(保持)Mahalanobis 距离。实验中的每个响应都要独立重复这一过程,从而得出联合图形摘要。我们介绍了模拟驱动的功率分析,并讨论了与模型灵活性和设计充分性有关的检验局限性。即使基础 SVEM 模型包含的参数多于观测值,该检验也能保持名义 I 类错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A randomized permutation whole-model test heuristic for Self-Validated Ensemble Models (SVEM)

We introduce a heuristic to test the significance of fit of Self-Validated Ensemble Models (SVEM) against the null hypothesis of a constant response. A SVEM model averages predictions from nBoot fits of a model, applied to fractionally weighted bootstraps of the target dataset. It tunes each fit on a validation copy of the training data, utilizing anti-correlated weights for training and validation. The proposed test computes SVEM predictions centered by the response column mean and normalized by the ensemble variability at each of nPoint points spaced throughout the factor space. A reference distribution is constructed by refitting the SVEM model to nPerm randomized permutations of the response column and recording the corresponding standardized predictions at the nPoint points. A reduced-rank singular value decomposition applied to the centered and scaled nPerm×nPoint reference matrix is used to calculate the Mahalanobis distance for each of the nPerm permutation results as well as the jackknife (holdout) Mahalanobis distance of the original response column. The process is repeated independently for each response in the experiment, producing a joint graphical summary. We present a simulation driven power analysis and discuss limitations of the test relating to model flexibility and design adequacy. The test maintains the nominal Type I error rate even when the base SVEM model contains more parameters than observations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信