{"title":"探索细胞外囊泡的意义:推动癌症发展的关键角色和可能的治疗工具","authors":"Bhaumik Patel , Shreyas Gaikwad , Sahdeo Prasad","doi":"10.1016/j.cpt.2024.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>Metastasis remains a critical challenge in cancer treatment and the leading cause of cancer-related mortality. Ongoing research has demonstrated the key role of extracellular vesicles (EVs) in facilitating communication between distant organs. Cancer cells release a substantial number of EVs that carry distinct cargo molecules, including oncogenic proteins, DNA fragments, and various RNA species. Upon uptake, these cargo molecules profoundly influence the biology of both normal and cancerous cells. This review consolidates the understanding of how EVs promote tumorigenesis by regulating processes such as proliferation, migration, metastasis, angiogenesis, stemness, and immunity. The exploration of EVs as a non-invasive method for cancer detection holds great promise, given that different cancer types exhibit unique protein and RNA signatures that can serve as valuable biomarkers for early diagnosis. Furthermore, growing interest exists in the potential bioengineering EVs for use as prospective therapeutic tools for cancer treatment.</div></div>","PeriodicalId":93920,"journal":{"name":"Cancer pathogenesis and therapy","volume":"3 2","pages":"Pages 109-119"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the significance of extracellular vesicles: Key players in advancing cancer and possible theranostic tools\",\"authors\":\"Bhaumik Patel , Shreyas Gaikwad , Sahdeo Prasad\",\"doi\":\"10.1016/j.cpt.2024.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metastasis remains a critical challenge in cancer treatment and the leading cause of cancer-related mortality. Ongoing research has demonstrated the key role of extracellular vesicles (EVs) in facilitating communication between distant organs. Cancer cells release a substantial number of EVs that carry distinct cargo molecules, including oncogenic proteins, DNA fragments, and various RNA species. Upon uptake, these cargo molecules profoundly influence the biology of both normal and cancerous cells. This review consolidates the understanding of how EVs promote tumorigenesis by regulating processes such as proliferation, migration, metastasis, angiogenesis, stemness, and immunity. The exploration of EVs as a non-invasive method for cancer detection holds great promise, given that different cancer types exhibit unique protein and RNA signatures that can serve as valuable biomarkers for early diagnosis. Furthermore, growing interest exists in the potential bioengineering EVs for use as prospective therapeutic tools for cancer treatment.</div></div>\",\"PeriodicalId\":93920,\"journal\":{\"name\":\"Cancer pathogenesis and therapy\",\"volume\":\"3 2\",\"pages\":\"Pages 109-119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer pathogenesis and therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949713224000296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer pathogenesis and therapy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949713224000296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring the significance of extracellular vesicles: Key players in advancing cancer and possible theranostic tools
Metastasis remains a critical challenge in cancer treatment and the leading cause of cancer-related mortality. Ongoing research has demonstrated the key role of extracellular vesicles (EVs) in facilitating communication between distant organs. Cancer cells release a substantial number of EVs that carry distinct cargo molecules, including oncogenic proteins, DNA fragments, and various RNA species. Upon uptake, these cargo molecules profoundly influence the biology of both normal and cancerous cells. This review consolidates the understanding of how EVs promote tumorigenesis by regulating processes such as proliferation, migration, metastasis, angiogenesis, stemness, and immunity. The exploration of EVs as a non-invasive method for cancer detection holds great promise, given that different cancer types exhibit unique protein and RNA signatures that can serve as valuable biomarkers for early diagnosis. Furthermore, growing interest exists in the potential bioengineering EVs for use as prospective therapeutic tools for cancer treatment.