VisCI:用于异常检测和交互式优化综合指数的可视化框架

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zhiguang Zhou , Yize Li , Yuna Ni , Weiwen Xu , Guoting Hu , Ying Lai , Peixiong Chen , Weihua Su
{"title":"VisCI:用于异常检测和交互式优化综合指数的可视化框架","authors":"Zhiguang Zhou ,&nbsp;Yize Li ,&nbsp;Yuna Ni ,&nbsp;Weiwen Xu ,&nbsp;Guoting Hu ,&nbsp;Ying Lai ,&nbsp;Peixiong Chen ,&nbsp;Weihua Su","doi":"10.1016/j.visinf.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Composite index is always derived with the weighted aggregation of hierarchical components, which is widely utilized to distill intricate and multidimensional matters in economic and business statistics. However, the composite indices always present inevitable anomalies at different levels oriented from the calculation and expression processes of hierarchical components, thereby impairing the precise depiction of specific economic issues. In this paper, we propose VisCI, a visualization framework for anomaly detection and interactive optimization of composite index. First, LSTM-AE model is performed to detect anomalies from the lower level to the higher level of the composite index. Then, a comprehensive array of visual cues is designed to visualize anomalies, such as hierarchy and anomaly visualization. In addition, an interactive operation is provided to ensure accurate and efficient index optimization, mitigating the adverse impact of anomalies on index calculation and representation. Finally, we implement a visualization framework with interactive interfaces, facilitating both anomaly detection and intuitive composite index optimization. Case studies based on real-world datasets and expert interviews are conducted to demonstrate the effectiveness of our VisCI in commodity index anomaly exploration and anomaly optimization.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"8 2","pages":"Pages 1-12"},"PeriodicalIF":3.8000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X24000147/pdfft?md5=e75183915943bf3b9b9ca949c47ab656&pid=1-s2.0-S2468502X24000147-main.pdf","citationCount":"0","resultStr":"{\"title\":\"VisCI: A visualization framework for anomaly detection and interactive optimization of composite index\",\"authors\":\"Zhiguang Zhou ,&nbsp;Yize Li ,&nbsp;Yuna Ni ,&nbsp;Weiwen Xu ,&nbsp;Guoting Hu ,&nbsp;Ying Lai ,&nbsp;Peixiong Chen ,&nbsp;Weihua Su\",\"doi\":\"10.1016/j.visinf.2024.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Composite index is always derived with the weighted aggregation of hierarchical components, which is widely utilized to distill intricate and multidimensional matters in economic and business statistics. However, the composite indices always present inevitable anomalies at different levels oriented from the calculation and expression processes of hierarchical components, thereby impairing the precise depiction of specific economic issues. In this paper, we propose VisCI, a visualization framework for anomaly detection and interactive optimization of composite index. First, LSTM-AE model is performed to detect anomalies from the lower level to the higher level of the composite index. Then, a comprehensive array of visual cues is designed to visualize anomalies, such as hierarchy and anomaly visualization. In addition, an interactive operation is provided to ensure accurate and efficient index optimization, mitigating the adverse impact of anomalies on index calculation and representation. Finally, we implement a visualization framework with interactive interfaces, facilitating both anomaly detection and intuitive composite index optimization. Case studies based on real-world datasets and expert interviews are conducted to demonstrate the effectiveness of our VisCI in commodity index anomaly exploration and anomaly optimization.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"8 2\",\"pages\":\"Pages 1-12\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468502X24000147/pdfft?md5=e75183915943bf3b9b9ca949c47ab656&pid=1-s2.0-S2468502X24000147-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X24000147\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X24000147","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

综合指数总是通过分层成分的加权汇总得出的,在经济和商业统计中被广泛用于提炼错综复杂的多维问题。然而,在分层成分的计算和表达过程中,综合指数总是不可避免地在不同层面出现异常,从而影响了对具体经济问题的精确描述。在本文中,我们提出了用于异常检测和交互式优化综合指数的可视化框架 VisCI。首先,通过 LSTM-AE 模型检测综合指数从低层到高层的异常情况。然后,设计了一系列全面的视觉线索来可视化异常,如层次结构和异常可视化。此外,我们还提供了一种交互式操作,以确保准确高效地优化索引,减轻异常情况对索引计算和表示的不利影响。最后,我们实施了一个具有交互界面的可视化框架,为异常检测和直观的复合索引优化提供了便利。我们基于真实世界数据集和专家访谈进行了案例研究,以证明我们的 VisCI 在商品指数异常检测和异常优化方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VisCI: A visualization framework for anomaly detection and interactive optimization of composite index

Composite index is always derived with the weighted aggregation of hierarchical components, which is widely utilized to distill intricate and multidimensional matters in economic and business statistics. However, the composite indices always present inevitable anomalies at different levels oriented from the calculation and expression processes of hierarchical components, thereby impairing the precise depiction of specific economic issues. In this paper, we propose VisCI, a visualization framework for anomaly detection and interactive optimization of composite index. First, LSTM-AE model is performed to detect anomalies from the lower level to the higher level of the composite index. Then, a comprehensive array of visual cues is designed to visualize anomalies, such as hierarchy and anomaly visualization. In addition, an interactive operation is provided to ensure accurate and efficient index optimization, mitigating the adverse impact of anomalies on index calculation and representation. Finally, we implement a visualization framework with interactive interfaces, facilitating both anomaly detection and intuitive composite index optimization. Case studies based on real-world datasets and expert interviews are conducted to demonstrate the effectiveness of our VisCI in commodity index anomaly exploration and anomaly optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信