长短期记忆算法在预测萨拉蒂加市甲烷(CH4)浓度中的应用

Febyola Kurnia Tiara Putri, Alz Danny Wowor
{"title":"长短期记忆算法在预测萨拉蒂加市甲烷(CH4)浓度中的应用","authors":"Febyola Kurnia Tiara Putri, Alz Danny Wowor","doi":"10.35870/jtik.v8i2.1917","DOIUrl":null,"url":null,"abstract":"Implementation of the Long Short Term Memory (LSTM) algorithm is done to build a prediction model that can handle complex time series data. Model development uses training and testing data and combines multiple time series to improve prediction accuracy. Model testing is done by measuring the root mean square error (RMSE) value as a performance indicator. The test results show that the application of the LSTM algorithm to the (CH4) sensor provides an optimal RMSE value, namely with a value for training data of 20% (0.09) and test data of 80% (0.14), indicating the prediction accuracy of methane gas (CH4) concentration is potentially unexploded, the results obtained have important implications for safety monitoring. This test contributes to the development of predictive methods to monitor and manage potential risks associated with (CH4) concentrations. The application of LSTM to (CH4) sensors not only improves prediction accuracy but also opens up opportunities for the development of safety systems that can more effectively predict and prevent potentially harmful phenomena due to methane gas.","PeriodicalId":474679,"journal":{"name":"Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi)","volume":"82 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementasi Algoritma Long Short-Term Memory dalam Prediksi Konsentrasi Gas Metana (CH4) di Kota Salatiga\",\"authors\":\"Febyola Kurnia Tiara Putri, Alz Danny Wowor\",\"doi\":\"10.35870/jtik.v8i2.1917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implementation of the Long Short Term Memory (LSTM) algorithm is done to build a prediction model that can handle complex time series data. Model development uses training and testing data and combines multiple time series to improve prediction accuracy. Model testing is done by measuring the root mean square error (RMSE) value as a performance indicator. The test results show that the application of the LSTM algorithm to the (CH4) sensor provides an optimal RMSE value, namely with a value for training data of 20% (0.09) and test data of 80% (0.14), indicating the prediction accuracy of methane gas (CH4) concentration is potentially unexploded, the results obtained have important implications for safety monitoring. This test contributes to the development of predictive methods to monitor and manage potential risks associated with (CH4) concentrations. The application of LSTM to (CH4) sensors not only improves prediction accuracy but also opens up opportunities for the development of safety systems that can more effectively predict and prevent potentially harmful phenomena due to methane gas.\",\"PeriodicalId\":474679,\"journal\":{\"name\":\"Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi)\",\"volume\":\"82 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi)\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.35870/jtik.v8i2.1917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi)","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.35870/jtik.v8i2.1917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实施长短期记忆(LSTM)算法是为了建立一个能处理复杂时间序列数据的预测模型。模型开发使用训练和测试数据,并结合多个时间序列来提高预测精度。模型测试通过测量均方根误差 (RMSE) 值作为性能指标。测试结果表明,将 LSTM 算法应用于(CH4)传感器可获得最佳 RMSE 值,即训练数据的 RMSE 值为 20%(0.09),测试数据的 RMSE 值为 80%(0.14),这表明甲烷气体(CH4)浓度的预测准确性可能尚未达到预期效果,所获得的结果对安全监测具有重要意义。该测试有助于开发预测方法,以监测和管理与(CH4)浓度相关的潜在风险。将 LSTM 应用于(CH4)传感器不仅能提高预测精度,还能为开发安全系统提供机会,从而更有效地预测和预防甲烷气体造成的潜在有害现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementasi Algoritma Long Short-Term Memory dalam Prediksi Konsentrasi Gas Metana (CH4) di Kota Salatiga
Implementation of the Long Short Term Memory (LSTM) algorithm is done to build a prediction model that can handle complex time series data. Model development uses training and testing data and combines multiple time series to improve prediction accuracy. Model testing is done by measuring the root mean square error (RMSE) value as a performance indicator. The test results show that the application of the LSTM algorithm to the (CH4) sensor provides an optimal RMSE value, namely with a value for training data of 20% (0.09) and test data of 80% (0.14), indicating the prediction accuracy of methane gas (CH4) concentration is potentially unexploded, the results obtained have important implications for safety monitoring. This test contributes to the development of predictive methods to monitor and manage potential risks associated with (CH4) concentrations. The application of LSTM to (CH4) sensors not only improves prediction accuracy but also opens up opportunities for the development of safety systems that can more effectively predict and prevent potentially harmful phenomena due to methane gas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信