Šimon Kdýr , Tiiu Elbra , Petr Pruner , Hakan Ucar , Petr Schnabl , Dragoman Rabrenović
{"title":"Dedina 段(塞尔维亚喀尔巴阡山脉)的侏罗纪-白垩纪界线:重磁化对磁地层学的影响","authors":"Šimon Kdýr , Tiiu Elbra , Petr Pruner , Hakan Ucar , Petr Schnabl , Dragoman Rabrenović","doi":"10.1016/j.cretres.2024.105912","DOIUrl":null,"url":null,"abstract":"<div><p>The Upper Tithonian to Lower Berriasian carbonate sequence of the Getic Nappe system was studied near Golubac (eastern Serbia) using rock-magnetic and paleomagnetic methods to verify the age of the magnetization and to correlate magnetostratigraphy with biostratigraphy. A major part of the Dedina section shows the presence of authigenic goethite, hematite and magnetite as carriers of remagnetization. The youngest overprint, residing in goethite, sometimes carrying up to 90 % of natural remanent magnetization, was probably received after 18 Ma. The remagnetization residing in hematite and magnetite, attributed to the late Early Cretaceous collision, was obtained during long normal polarity Chron C34 (118–82 Ma). The mean direction implies a clockwise post-remagnetization rotation by about 57°. The normal (<em>D</em><sub><em>n</em></sub>) and reverse (<em>E</em><sub><em>r</em></sub>) polarity components, heavily affected by the chemo-remanent magnetization overprint, can be tentatively interpreted in terms of polarity zones. Thus, the obtained data enabled a preliminary identification of M17r to M19n.2n magnetochrons. The correlation of magnetostratigraphy with biostratigraphy of the Dedina section contributes to the stratigraphic framework necessary for the definition of the Berriasian Global Boundary Stratotype Section and Point.</p></div>","PeriodicalId":55207,"journal":{"name":"Cretaceous Research","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jurassic–Cretaceous boundary in the Dedina section (Serbian Carpathians): Effects of remagnetization on magnetostratigraphy\",\"authors\":\"Šimon Kdýr , Tiiu Elbra , Petr Pruner , Hakan Ucar , Petr Schnabl , Dragoman Rabrenović\",\"doi\":\"10.1016/j.cretres.2024.105912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Upper Tithonian to Lower Berriasian carbonate sequence of the Getic Nappe system was studied near Golubac (eastern Serbia) using rock-magnetic and paleomagnetic methods to verify the age of the magnetization and to correlate magnetostratigraphy with biostratigraphy. A major part of the Dedina section shows the presence of authigenic goethite, hematite and magnetite as carriers of remagnetization. The youngest overprint, residing in goethite, sometimes carrying up to 90 % of natural remanent magnetization, was probably received after 18 Ma. The remagnetization residing in hematite and magnetite, attributed to the late Early Cretaceous collision, was obtained during long normal polarity Chron C34 (118–82 Ma). The mean direction implies a clockwise post-remagnetization rotation by about 57°. The normal (<em>D</em><sub><em>n</em></sub>) and reverse (<em>E</em><sub><em>r</em></sub>) polarity components, heavily affected by the chemo-remanent magnetization overprint, can be tentatively interpreted in terms of polarity zones. Thus, the obtained data enabled a preliminary identification of M17r to M19n.2n magnetochrons. The correlation of magnetostratigraphy with biostratigraphy of the Dedina section contributes to the stratigraphic framework necessary for the definition of the Berriasian Global Boundary Stratotype Section and Point.</p></div>\",\"PeriodicalId\":55207,\"journal\":{\"name\":\"Cretaceous Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cretaceous Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195667124000855\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cretaceous Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195667124000855","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Jurassic–Cretaceous boundary in the Dedina section (Serbian Carpathians): Effects of remagnetization on magnetostratigraphy
The Upper Tithonian to Lower Berriasian carbonate sequence of the Getic Nappe system was studied near Golubac (eastern Serbia) using rock-magnetic and paleomagnetic methods to verify the age of the magnetization and to correlate magnetostratigraphy with biostratigraphy. A major part of the Dedina section shows the presence of authigenic goethite, hematite and magnetite as carriers of remagnetization. The youngest overprint, residing in goethite, sometimes carrying up to 90 % of natural remanent magnetization, was probably received after 18 Ma. The remagnetization residing in hematite and magnetite, attributed to the late Early Cretaceous collision, was obtained during long normal polarity Chron C34 (118–82 Ma). The mean direction implies a clockwise post-remagnetization rotation by about 57°. The normal (Dn) and reverse (Er) polarity components, heavily affected by the chemo-remanent magnetization overprint, can be tentatively interpreted in terms of polarity zones. Thus, the obtained data enabled a preliminary identification of M17r to M19n.2n magnetochrons. The correlation of magnetostratigraphy with biostratigraphy of the Dedina section contributes to the stratigraphic framework necessary for the definition of the Berriasian Global Boundary Stratotype Section and Point.
期刊介绍:
Cretaceous Research provides a forum for the rapid publication of research on all aspects of the Cretaceous Period, including its boundaries with the Jurassic and Palaeogene. Authoritative papers reporting detailed investigations of Cretaceous stratigraphy and palaeontology, studies of regional geology, and reviews of recently published books are complemented by short communications of significant new findings.
Papers submitted to Cretaceous Research should place the research in a broad context, with emphasis placed towards our better understanding of the Cretaceous, that are therefore of interest to the diverse, international readership of the journal. Full length papers that focus solely on a local theme or area will not be accepted for publication; authors of short communications are encouraged to discuss how their findings are of relevance to the Cretaceous on a broad scale.
Research Areas include:
• Regional geology
• Stratigraphy and palaeontology
• Palaeobiology
• Palaeobiogeography
• Palaeoceanography
• Palaeoclimatology
• Evolutionary Palaeoecology
• Geochronology
• Global events.