{"title":"求解电磁机械耦合场的数值模拟方法","authors":"Juanmian Lei , Wanyi Liu , Yong Yu , Zheng Luo","doi":"10.1016/j.jer.2024.04.016","DOIUrl":null,"url":null,"abstract":"<div><div>A new numerical simulation method based on the finite volume method has been proposed to address the challenges associated with the pseudo-oscillation phenomenon that occurs with an increased Péclet number, as well as determining an appropriate time step for electromagnetic-mechanical coupled physical field calculations. This method utilizes the concept of upwind from Computational Fluid Dynamics (CFD) to solve Maxwell's equations, a finite-volume method for discretizing the electromagnetic diffusion equations. Through computing typical electromagnetic field problems such as TEAM problem 9–1 and comparing the results to the literature, it has been confirmed that this method has sufficient computational accuracy to solve electromagnetic field numerical simulation problems containing moving conductors. Additionally, a three-dimensional simulation model of the electromagnetic coil gun has been established to verify the viability of the proposed method for solving magnetic field problems under the electromagnetic launch (EML) system. The study also examined the change in magnetic field strength and current density of the EML device during the launching process. The results lay the foundation for the technical application of this method.</div></div>","PeriodicalId":48803,"journal":{"name":"Journal of Engineering Research","volume":"13 2","pages":"Pages 1127-1139"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical simulation method for solving electromagnetic-mechanical coupling field\",\"authors\":\"Juanmian Lei , Wanyi Liu , Yong Yu , Zheng Luo\",\"doi\":\"10.1016/j.jer.2024.04.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A new numerical simulation method based on the finite volume method has been proposed to address the challenges associated with the pseudo-oscillation phenomenon that occurs with an increased Péclet number, as well as determining an appropriate time step for electromagnetic-mechanical coupled physical field calculations. This method utilizes the concept of upwind from Computational Fluid Dynamics (CFD) to solve Maxwell's equations, a finite-volume method for discretizing the electromagnetic diffusion equations. Through computing typical electromagnetic field problems such as TEAM problem 9–1 and comparing the results to the literature, it has been confirmed that this method has sufficient computational accuracy to solve electromagnetic field numerical simulation problems containing moving conductors. Additionally, a three-dimensional simulation model of the electromagnetic coil gun has been established to verify the viability of the proposed method for solving magnetic field problems under the electromagnetic launch (EML) system. The study also examined the change in magnetic field strength and current density of the EML device during the launching process. The results lay the foundation for the technical application of this method.</div></div>\",\"PeriodicalId\":48803,\"journal\":{\"name\":\"Journal of Engineering Research\",\"volume\":\"13 2\",\"pages\":\"Pages 1127-1139\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2307187724001068\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307187724001068","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A numerical simulation method for solving electromagnetic-mechanical coupling field
A new numerical simulation method based on the finite volume method has been proposed to address the challenges associated with the pseudo-oscillation phenomenon that occurs with an increased Péclet number, as well as determining an appropriate time step for electromagnetic-mechanical coupled physical field calculations. This method utilizes the concept of upwind from Computational Fluid Dynamics (CFD) to solve Maxwell's equations, a finite-volume method for discretizing the electromagnetic diffusion equations. Through computing typical electromagnetic field problems such as TEAM problem 9–1 and comparing the results to the literature, it has been confirmed that this method has sufficient computational accuracy to solve electromagnetic field numerical simulation problems containing moving conductors. Additionally, a three-dimensional simulation model of the electromagnetic coil gun has been established to verify the viability of the proposed method for solving magnetic field problems under the electromagnetic launch (EML) system. The study also examined the change in magnetic field strength and current density of the EML device during the launching process. The results lay the foundation for the technical application of this method.
期刊介绍:
Journal of Engineering Research (JER) is a international, peer reviewed journal which publishes full length original research papers, reviews, case studies related to all areas of Engineering such as: Civil, Mechanical, Industrial, Electrical, Computer, Chemical, Petroleum, Aerospace, Architectural, Biomedical, Coastal, Environmental, Marine & Ocean, Metallurgical & Materials, software, Surveying, Systems and Manufacturing Engineering. In particular, JER focuses on innovative approaches and methods that contribute to solving the environmental and manufacturing problems, which exist primarily in the Arabian Gulf region and the Middle East countries. Kuwait University used to publish the Journal "Kuwait Journal of Science and Engineering" (ISSN: 1024-8684), which included Science and Engineering articles since 1974. In 2011 the decision was taken to split KJSE into two independent Journals - "Journal of Engineering Research "(JER) and "Kuwait Journal of Science" (KJS).