处理研究中的缺失数据

Q2 Medicine
P. Ranganathan, Sally Hunsberger
{"title":"处理研究中的缺失数据","authors":"P. Ranganathan, Sally Hunsberger","doi":"10.4103/picr.picr_38_24","DOIUrl":null,"url":null,"abstract":"\n Missing data are an inevitable part of research and lead to a decrease in the size of the analyzable population, and biased and imprecise estimates. In this article, we discuss the types of missing data, methods to handle missing data and suggest ways in which missing data can be minimized.","PeriodicalId":20015,"journal":{"name":"Perspectives in Clinical Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Handling missing data in research\",\"authors\":\"P. Ranganathan, Sally Hunsberger\",\"doi\":\"10.4103/picr.picr_38_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Missing data are an inevitable part of research and lead to a decrease in the size of the analyzable population, and biased and imprecise estimates. In this article, we discuss the types of missing data, methods to handle missing data and suggest ways in which missing data can be minimized.\",\"PeriodicalId\":20015,\"journal\":{\"name\":\"Perspectives in Clinical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Perspectives in Clinical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/picr.picr_38_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspectives in Clinical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/picr.picr_38_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

缺失数据是研究工作中不可避免的一部分,它会导致可分析人口数量的减少以及估计值的偏差和不精确。本文将讨论缺失数据的类型、处理缺失数据的方法,并提出尽量减少缺失数据的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handling missing data in research
Missing data are an inevitable part of research and lead to a decrease in the size of the analyzable population, and biased and imprecise estimates. In this article, we discuss the types of missing data, methods to handle missing data and suggest ways in which missing data can be minimized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Perspectives in Clinical Research
Perspectives in Clinical Research Medicine-Medicine (all)
CiteScore
2.90
自引率
0.00%
发文量
41
审稿时长
36 weeks
期刊介绍: This peer review quarterly journal is positioned to build a learning clinical research community in India. This scientific journal will have a broad coverage of topics across clinical research disciplines including clinical research methodology, research ethics, clinical data management, training, data management, biostatistics, regulatory and will include original articles, reviews, news and views, perspectives, and other interesting sections. PICR will offer all clinical research stakeholders in India – academicians, ethics committees, regulators, and industry professionals -a forum for exchange of ideas, information and opinions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信