Sipeng Yang , Wenhui Ren , Xiwen Zeng , Qingchuan Zhu , Hongbo Fu , Kaijun Fan , Lei Yang , Jingping Yu , Qilong Kou , Xiaogang Jin
{"title":"为数据驱动的网格去噪生成真实噪声和旋转变量模型","authors":"Sipeng Yang , Wenhui Ren , Xiwen Zeng , Qingchuan Zhu , Hongbo Fu , Kaijun Fan , Lei Yang , Jingping Yu , Qilong Kou , Xiaogang Jin","doi":"10.1016/j.cagd.2024.102306","DOIUrl":null,"url":null,"abstract":"<div><p>3D mesh denoising is a crucial pre-processing step in many graphics applications. However, existing data-driven mesh denoising models, primarily trained on synthetic white noise, are less effective when applied to real-world meshes with the noise of complex intensities and distributions. Moreover, how to comprehensively capture information from input meshes and apply suitable denoising models for feature-preserving mesh denoising remains a critical and unresolved challenge. This paper presents a rotation-Equivariant model-based Mesh Denoising (EMD) model and a Realistic Mesh Noise Generation (RMNG) model to address these issues. Our EMD model leverages rotation-equivariant features and self-attention weights of geodesic patches for more effective feature extraction, thereby achieving SOTA denoising results. The RMNG model, based on the Generative Adversarial Networks (GANs) architecture, generates massive amounts of realistic noisy and noiseless mesh pairs data for data-driven mesh denoising model training, significantly benefiting real-world denoising tasks. To address the smooth degradation and loss of sharp edges commonly observed in captured meshes, we further introduce varying levels of Laplacian smoothing to input meshes during the paired training data generation, endowing the trained denoising model with feature recovery capabilities. Experimental results demonstrate the superior performance of our proposed method in preserving fine-grained features while removing noise on real-world captured meshes.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102306"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generated realistic noise and rotation-equivariant models for data-driven mesh denoising\",\"authors\":\"Sipeng Yang , Wenhui Ren , Xiwen Zeng , Qingchuan Zhu , Hongbo Fu , Kaijun Fan , Lei Yang , Jingping Yu , Qilong Kou , Xiaogang Jin\",\"doi\":\"10.1016/j.cagd.2024.102306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>3D mesh denoising is a crucial pre-processing step in many graphics applications. However, existing data-driven mesh denoising models, primarily trained on synthetic white noise, are less effective when applied to real-world meshes with the noise of complex intensities and distributions. Moreover, how to comprehensively capture information from input meshes and apply suitable denoising models for feature-preserving mesh denoising remains a critical and unresolved challenge. This paper presents a rotation-Equivariant model-based Mesh Denoising (EMD) model and a Realistic Mesh Noise Generation (RMNG) model to address these issues. Our EMD model leverages rotation-equivariant features and self-attention weights of geodesic patches for more effective feature extraction, thereby achieving SOTA denoising results. The RMNG model, based on the Generative Adversarial Networks (GANs) architecture, generates massive amounts of realistic noisy and noiseless mesh pairs data for data-driven mesh denoising model training, significantly benefiting real-world denoising tasks. To address the smooth degradation and loss of sharp edges commonly observed in captured meshes, we further introduce varying levels of Laplacian smoothing to input meshes during the paired training data generation, endowing the trained denoising model with feature recovery capabilities. Experimental results demonstrate the superior performance of our proposed method in preserving fine-grained features while removing noise on real-world captured meshes.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"111 \",\"pages\":\"Article 102306\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839624000402\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624000402","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
三维网格去噪是许多图形应用中至关重要的预处理步骤。然而,现有的数据驱动网格去噪模型主要是在合成白噪声的基础上进行训练的,当应用到具有复杂强度和分布噪声的真实世界网格时,其效果并不理想。此外,如何从输入网格中全面捕捉信息,并应用合适的去噪模型对网格进行保全特征去噪,仍然是一个关键且尚未解决的难题。本文提出了基于旋转-等变模型的网格去噪模型(EMD)和现实网格噪声生成模型(RMNG)来解决这些问题。我们的 EMD 模型利用旋转平方特征和测地补丁的自关注权重进行更有效的特征提取,从而实现 SOTA 去噪效果。基于生成对抗网络(GANs)架构的RMNG模型可生成大量真实的有噪声和无噪声网格对数据,用于数据驱动的网格去噪模型训练,极大地改进了现实世界中的去噪任务。为了解决捕捉到的网格中常见的平滑退化和锐利边缘丢失问题,我们在生成成对训练数据时进一步对输入网格引入了不同程度的拉普拉斯平滑处理,从而赋予训练好的去噪模型以特征恢复能力。实验结果表明,我们提出的方法在保留细粒度特征的同时,还能去除真实世界中捕捉到的网格上的噪声,性能优越。
Generated realistic noise and rotation-equivariant models for data-driven mesh denoising
3D mesh denoising is a crucial pre-processing step in many graphics applications. However, existing data-driven mesh denoising models, primarily trained on synthetic white noise, are less effective when applied to real-world meshes with the noise of complex intensities and distributions. Moreover, how to comprehensively capture information from input meshes and apply suitable denoising models for feature-preserving mesh denoising remains a critical and unresolved challenge. This paper presents a rotation-Equivariant model-based Mesh Denoising (EMD) model and a Realistic Mesh Noise Generation (RMNG) model to address these issues. Our EMD model leverages rotation-equivariant features and self-attention weights of geodesic patches for more effective feature extraction, thereby achieving SOTA denoising results. The RMNG model, based on the Generative Adversarial Networks (GANs) architecture, generates massive amounts of realistic noisy and noiseless mesh pairs data for data-driven mesh denoising model training, significantly benefiting real-world denoising tasks. To address the smooth degradation and loss of sharp edges commonly observed in captured meshes, we further introduce varying levels of Laplacian smoothing to input meshes during the paired training data generation, endowing the trained denoising model with feature recovery capabilities. Experimental results demonstrate the superior performance of our proposed method in preserving fine-grained features while removing noise on real-world captured meshes.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.