Marco Bonilla , Orhan Efe , Haresh Selvaskandan , Edgar V. Lerma , Nasim Wiegley
{"title":"病灶节段性肾小球硬化症分类综述,聚焦遗传相关性","authors":"Marco Bonilla , Orhan Efe , Haresh Selvaskandan , Edgar V. Lerma , Nasim Wiegley","doi":"10.1016/j.xkme.2024.100826","DOIUrl":null,"url":null,"abstract":"<div><p>Focal segmental glomerulosclerosis (FSGS) defines a distinct histologic pattern observed in kidney tissue that is linked to several distinct underlying causes, all converging on the common factor of podocyte injury. It presents a considerable challenge in terms of classification because of its varied underlying causes and the limited correlation between histopathology and clinical outcomes. Critically, precise nomenclature is key to describe and delineate the pathogenesis, subsequently guiding the selection of suitable and precision therapies. A proposed pathomechanism-based approach has been suggested for FSGS classification. This approach differentiates among primary, secondary, genetic, and undetermined causes, aiming to provide clarity. Genetic FSGS from monogenic mutations can emerge during childhood or adulthood, and it is advisable to conduct genetic testing in cases in which there is a family history of chronic kidney disease, nephrotic syndrome, or resistance to treatment. Genome-wide association studies have identified several genetic risk variants, such as those in apolipoprotein L1 (<em>APOL1</em>), that play a role in the development of FSGS. Currently, no specific treatments have been approved to treat genetic FSGS; however, interventions targeting underlying cofactor deficiencies have shown potential in some cases. Furthermore, encouraging results have emerged from a phase 2 trial investigating inaxaplin, a novel small molecule APOL1 channel inhibitor, in <em>APOL1</em>-associated FSGS.</p></div>","PeriodicalId":17885,"journal":{"name":"Kidney Medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590059524000372/pdfft?md5=94cd3108604d30cd53491d9615f30ee9&pid=1-s2.0-S2590059524000372-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A Review of Focal Segmental Glomerulosclerosis Classification With a Focus on Genetic Associations\",\"authors\":\"Marco Bonilla , Orhan Efe , Haresh Selvaskandan , Edgar V. Lerma , Nasim Wiegley\",\"doi\":\"10.1016/j.xkme.2024.100826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Focal segmental glomerulosclerosis (FSGS) defines a distinct histologic pattern observed in kidney tissue that is linked to several distinct underlying causes, all converging on the common factor of podocyte injury. It presents a considerable challenge in terms of classification because of its varied underlying causes and the limited correlation between histopathology and clinical outcomes. Critically, precise nomenclature is key to describe and delineate the pathogenesis, subsequently guiding the selection of suitable and precision therapies. A proposed pathomechanism-based approach has been suggested for FSGS classification. This approach differentiates among primary, secondary, genetic, and undetermined causes, aiming to provide clarity. Genetic FSGS from monogenic mutations can emerge during childhood or adulthood, and it is advisable to conduct genetic testing in cases in which there is a family history of chronic kidney disease, nephrotic syndrome, or resistance to treatment. Genome-wide association studies have identified several genetic risk variants, such as those in apolipoprotein L1 (<em>APOL1</em>), that play a role in the development of FSGS. Currently, no specific treatments have been approved to treat genetic FSGS; however, interventions targeting underlying cofactor deficiencies have shown potential in some cases. Furthermore, encouraging results have emerged from a phase 2 trial investigating inaxaplin, a novel small molecule APOL1 channel inhibitor, in <em>APOL1</em>-associated FSGS.</p></div>\",\"PeriodicalId\":17885,\"journal\":{\"name\":\"Kidney Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590059524000372/pdfft?md5=94cd3108604d30cd53491d9615f30ee9&pid=1-s2.0-S2590059524000372-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kidney Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590059524000372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590059524000372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
A Review of Focal Segmental Glomerulosclerosis Classification With a Focus on Genetic Associations
Focal segmental glomerulosclerosis (FSGS) defines a distinct histologic pattern observed in kidney tissue that is linked to several distinct underlying causes, all converging on the common factor of podocyte injury. It presents a considerable challenge in terms of classification because of its varied underlying causes and the limited correlation between histopathology and clinical outcomes. Critically, precise nomenclature is key to describe and delineate the pathogenesis, subsequently guiding the selection of suitable and precision therapies. A proposed pathomechanism-based approach has been suggested for FSGS classification. This approach differentiates among primary, secondary, genetic, and undetermined causes, aiming to provide clarity. Genetic FSGS from monogenic mutations can emerge during childhood or adulthood, and it is advisable to conduct genetic testing in cases in which there is a family history of chronic kidney disease, nephrotic syndrome, or resistance to treatment. Genome-wide association studies have identified several genetic risk variants, such as those in apolipoprotein L1 (APOL1), that play a role in the development of FSGS. Currently, no specific treatments have been approved to treat genetic FSGS; however, interventions targeting underlying cofactor deficiencies have shown potential in some cases. Furthermore, encouraging results have emerged from a phase 2 trial investigating inaxaplin, a novel small molecule APOL1 channel inhibitor, in APOL1-associated FSGS.