船波的地球固定观测器

H. Liang, Yan Li, Xiaobo Chen
{"title":"船波的地球固定观测器","authors":"H. Liang, Yan Li, Xiaobo Chen","doi":"10.1017/jfm.2024.167","DOIUrl":null,"url":null,"abstract":"This work deals with the linear surface waves generated by a vessel advancing at a constant forward speed. These waves, known as ship waves, appear stationary to an observer on the vessel. Rather than exploring the well-studied stationary ship waves, this work delves into the physical properties of ship waves measured at Earth-fixed locations. While it might have been expected that analysing these waves in an Earth-fixed coordinate system would be a straightforward transformation from existing analytical theories in a moving coordinate system, the reality proves to be quite different. The properties of waves measured at fixed locations due to a passing ship turn out to be complex and non-trivial. They exhibit unique characteristics, being notably unsteady and short crested, despite appearing stationary to an observer on the generating vessel. The analytical expressions for the physical properties of these unsteady waves are made available in this work, including the amplitude, frequency, wavenumber, direction of propagation, phase velocity and group velocity. Based on these newly derived expressions and two-point measurements, an inverse method has been presented for determining the advancing speed and the course of motion of the moving ship responsible for the wave generation. The results from this study can be used in a wide range of applications, such as interpreting data from point measurements and assessing the roles of ship waves in transporting ocean particles.","PeriodicalId":505053,"journal":{"name":"Journal of Fluid Mechanics","volume":"207 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Earth-fixed observer to ship waves\",\"authors\":\"H. Liang, Yan Li, Xiaobo Chen\",\"doi\":\"10.1017/jfm.2024.167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work deals with the linear surface waves generated by a vessel advancing at a constant forward speed. These waves, known as ship waves, appear stationary to an observer on the vessel. Rather than exploring the well-studied stationary ship waves, this work delves into the physical properties of ship waves measured at Earth-fixed locations. While it might have been expected that analysing these waves in an Earth-fixed coordinate system would be a straightforward transformation from existing analytical theories in a moving coordinate system, the reality proves to be quite different. The properties of waves measured at fixed locations due to a passing ship turn out to be complex and non-trivial. They exhibit unique characteristics, being notably unsteady and short crested, despite appearing stationary to an observer on the generating vessel. The analytical expressions for the physical properties of these unsteady waves are made available in this work, including the amplitude, frequency, wavenumber, direction of propagation, phase velocity and group velocity. Based on these newly derived expressions and two-point measurements, an inverse method has been presented for determining the advancing speed and the course of motion of the moving ship responsible for the wave generation. The results from this study can be used in a wide range of applications, such as interpreting data from point measurements and assessing the roles of ship waves in transporting ocean particles.\",\"PeriodicalId\":505053,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"207 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jfm.2024.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究涉及以恒定速度前进的船只所产生的线性表面波。这些波被称为船波,在船上的观察者看来是静止的。这项工作不是探索研究得很透彻的静止船波,而是深入研究在地球固定位置测量到的船波的物理特性。人们可能会认为,在地球固定坐标系中分析这些波浪,可以从现有的运动坐标系分析理论中直接转换过来,但事实证明情况完全不同。过往船只在固定位置测量到的波的特性非常复杂,而且非同一般。它们表现出独特的特性,尤其是不稳定和短波峰,尽管在产生波浪的船只上的观察者看来是静止的。本研究提供了这些非稳态波的物理特性分析表达式,包括振幅、频率、波数、传播方向、相速度和群速度。根据这些新推导出的表达式和两点测量结果,提出了一种反演方法,用于确定产生波浪的移动船只的前进速度和运动轨迹。这项研究的结果可用于多种应用,如解释点测量数据和评估船舶波浪在海洋颗粒传输中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Earth-fixed observer to ship waves
This work deals with the linear surface waves generated by a vessel advancing at a constant forward speed. These waves, known as ship waves, appear stationary to an observer on the vessel. Rather than exploring the well-studied stationary ship waves, this work delves into the physical properties of ship waves measured at Earth-fixed locations. While it might have been expected that analysing these waves in an Earth-fixed coordinate system would be a straightforward transformation from existing analytical theories in a moving coordinate system, the reality proves to be quite different. The properties of waves measured at fixed locations due to a passing ship turn out to be complex and non-trivial. They exhibit unique characteristics, being notably unsteady and short crested, despite appearing stationary to an observer on the generating vessel. The analytical expressions for the physical properties of these unsteady waves are made available in this work, including the amplitude, frequency, wavenumber, direction of propagation, phase velocity and group velocity. Based on these newly derived expressions and two-point measurements, an inverse method has been presented for determining the advancing speed and the course of motion of the moving ship responsible for the wave generation. The results from this study can be used in a wide range of applications, such as interpreting data from point measurements and assessing the roles of ship waves in transporting ocean particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信