{"title":"用于步态识别的连续时间和帧间运动激励特征学习","authors":"Chunsheng Hua, Hao Zhang, Jia Li, Yingjie Pan","doi":"10.1049/cvi2.12278","DOIUrl":null,"url":null,"abstract":"<p>The authors present global-interval and local-continuous feature extraction networks for gait recognition. Unlike conventional gait recognition methods focussing on the full gait cycle, the authors introduce a novel global- continuous-dilated temporal feature extraction (<i>TFE</i>) to extract continuous and interval motion features from the silhouette frames globally. Simultaneously, an inter-frame motion excitation (<i>IME</i>) module is proposed to enhance the unique motion expression of an individual, which remains unchanged regardless of clothing variations. The spatio-temporal features extracted from the <i>TFE</i> and <i>IME</i> modules are then weighted and concatenated by an adaptive aggregator network for recognition. Through the experiments over CASIA-B and mini-OUMVLP datasets, the proposed method has shown the comparable performance (as 98%, 95%, and 84.9% in the normal walking, carrying a bag or packbag, and wearing coats or jackets categories in CASIA-B, and 89% in mini-OUMVLP) to the other state-of-the-art approaches. Extensive experiments conducted on the CASIA-B and mini-OUMVLP datasets have demonstrated the comparable performance of our proposed method compared to other state-of-the-art approaches.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 6","pages":"788-800"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12278","citationCount":"0","resultStr":"{\"title\":\"Continuous-dilated temporal and inter-frame motion excitation feature learning for gait recognition\",\"authors\":\"Chunsheng Hua, Hao Zhang, Jia Li, Yingjie Pan\",\"doi\":\"10.1049/cvi2.12278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The authors present global-interval and local-continuous feature extraction networks for gait recognition. Unlike conventional gait recognition methods focussing on the full gait cycle, the authors introduce a novel global- continuous-dilated temporal feature extraction (<i>TFE</i>) to extract continuous and interval motion features from the silhouette frames globally. Simultaneously, an inter-frame motion excitation (<i>IME</i>) module is proposed to enhance the unique motion expression of an individual, which remains unchanged regardless of clothing variations. The spatio-temporal features extracted from the <i>TFE</i> and <i>IME</i> modules are then weighted and concatenated by an adaptive aggregator network for recognition. Through the experiments over CASIA-B and mini-OUMVLP datasets, the proposed method has shown the comparable performance (as 98%, 95%, and 84.9% in the normal walking, carrying a bag or packbag, and wearing coats or jackets categories in CASIA-B, and 89% in mini-OUMVLP) to the other state-of-the-art approaches. Extensive experiments conducted on the CASIA-B and mini-OUMVLP datasets have demonstrated the comparable performance of our proposed method compared to other state-of-the-art approaches.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 6\",\"pages\":\"788-800\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12278\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12278\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12278","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Continuous-dilated temporal and inter-frame motion excitation feature learning for gait recognition
The authors present global-interval and local-continuous feature extraction networks for gait recognition. Unlike conventional gait recognition methods focussing on the full gait cycle, the authors introduce a novel global- continuous-dilated temporal feature extraction (TFE) to extract continuous and interval motion features from the silhouette frames globally. Simultaneously, an inter-frame motion excitation (IME) module is proposed to enhance the unique motion expression of an individual, which remains unchanged regardless of clothing variations. The spatio-temporal features extracted from the TFE and IME modules are then weighted and concatenated by an adaptive aggregator network for recognition. Through the experiments over CASIA-B and mini-OUMVLP datasets, the proposed method has shown the comparable performance (as 98%, 95%, and 84.9% in the normal walking, carrying a bag or packbag, and wearing coats or jackets categories in CASIA-B, and 89% in mini-OUMVLP) to the other state-of-the-art approaches. Extensive experiments conducted on the CASIA-B and mini-OUMVLP datasets have demonstrated the comparable performance of our proposed method compared to other state-of-the-art approaches.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf