Xiaoya Bian , Haodong Yang , Hui Liu , Zhiyao Xu , Rongjun Zhang
{"title":"利用预制水平排水沟的真空预加载步进式电渗法改良污泥的实验研究","authors":"Xiaoya Bian , Haodong Yang , Hui Liu , Zhiyao Xu , Rongjun Zhang","doi":"10.1016/j.geotexmem.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>To improve the defects of low electroosmosis efficiency in the later stage and high energy consumption of conventional vacuum preloading combined with electroosmosis, the vacuum preloading-stepped electroosmosis method (VP-SEO) with prefabricated horizontal drain (PHD) was proposed for dredged sludge in this paper. In the test, waste concrete fine aggregate was used as the horizontal drainage cushion to alleviate the clogging of the PHD. The results showed that compared to vacuum preloading combined with electroosmosis (VP-EO), more drainage channels throughout the soil were produced after VP-SEO treatment, and VP-SEO could maintain a higher drainage efficiency in the later stage of treatment with improved final drainage and consolidation. The sludge treated by VP-SEO showed a significant increase in vane shear strength and a reduction in water content. Furthermore, the water loss and shrinkage of the soil surface after VP-SEO treatment were more uniform than that of VP-EO treatment, and the electroosmotic energy consumption and anode erosion were also lower. This study provides an effective improvement scheme for solidifying sludge with a high water content by conventional vacuum preloading combined with electroosmosis method.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 4","pages":"Pages 753-761"},"PeriodicalIF":4.7000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the improvement of sludge by vacuum preloading-stepped electroosmosis method with prefabricated horizontal drain\",\"authors\":\"Xiaoya Bian , Haodong Yang , Hui Liu , Zhiyao Xu , Rongjun Zhang\",\"doi\":\"10.1016/j.geotexmem.2024.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To improve the defects of low electroosmosis efficiency in the later stage and high energy consumption of conventional vacuum preloading combined with electroosmosis, the vacuum preloading-stepped electroosmosis method (VP-SEO) with prefabricated horizontal drain (PHD) was proposed for dredged sludge in this paper. In the test, waste concrete fine aggregate was used as the horizontal drainage cushion to alleviate the clogging of the PHD. The results showed that compared to vacuum preloading combined with electroosmosis (VP-EO), more drainage channels throughout the soil were produced after VP-SEO treatment, and VP-SEO could maintain a higher drainage efficiency in the later stage of treatment with improved final drainage and consolidation. The sludge treated by VP-SEO showed a significant increase in vane shear strength and a reduction in water content. Furthermore, the water loss and shrinkage of the soil surface after VP-SEO treatment were more uniform than that of VP-EO treatment, and the electroosmotic energy consumption and anode erosion were also lower. This study provides an effective improvement scheme for solidifying sludge with a high water content by conventional vacuum preloading combined with electroosmosis method.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"52 4\",\"pages\":\"Pages 753-761\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424000347\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000347","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Experimental study on the improvement of sludge by vacuum preloading-stepped electroosmosis method with prefabricated horizontal drain
To improve the defects of low electroosmosis efficiency in the later stage and high energy consumption of conventional vacuum preloading combined with electroosmosis, the vacuum preloading-stepped electroosmosis method (VP-SEO) with prefabricated horizontal drain (PHD) was proposed for dredged sludge in this paper. In the test, waste concrete fine aggregate was used as the horizontal drainage cushion to alleviate the clogging of the PHD. The results showed that compared to vacuum preloading combined with electroosmosis (VP-EO), more drainage channels throughout the soil were produced after VP-SEO treatment, and VP-SEO could maintain a higher drainage efficiency in the later stage of treatment with improved final drainage and consolidation. The sludge treated by VP-SEO showed a significant increase in vane shear strength and a reduction in water content. Furthermore, the water loss and shrinkage of the soil surface after VP-SEO treatment were more uniform than that of VP-EO treatment, and the electroosmotic energy consumption and anode erosion were also lower. This study provides an effective improvement scheme for solidifying sludge with a high water content by conventional vacuum preloading combined with electroosmosis method.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.