预组装糖萼脂质体纳米载体对恢复败血症患者脑内皮糖萼的长期疗效

IF 2.9 4区 医学 Q2 PERIPHERAL VASCULAR DISEASE
Shinya Ishiko , An Huang , Dong Sun
{"title":"预组装糖萼脂质体纳米载体对恢复败血症患者脑内皮糖萼的长期疗效","authors":"Shinya Ishiko ,&nbsp;An Huang ,&nbsp;Dong Sun","doi":"10.1016/j.mvr.2024.104684","DOIUrl":null,"url":null,"abstract":"<div><p>The endothelial glycocalyx (EG) undergoes early degradation in sepsis. Our recent work introduced a novel therapeutic approach involving liposomal nanocarriers of preassembled glycocalyx (LNPG) to restore EG in lipopolysaccharide (LPS)-induced sepsis model of mice. While short-term effects were promising, this study focuses on the long-term impact of LNPG on mouse cerebral microcirculation. Utilizing cranial window, we assessed the stability of vascular density (VD) and perfused boundary region (PBR), an index of EG thickness, over a five-day period in normal control mice. In septic groups (LPS, LPS + 1-dose LNPG, and LPS + 2-dose LNPG), the exposure of mice to LPS significantly reduced VD and increased PBR within 3 h. Without LNPG treatment, PBR returned to the normal control level by endogenous processes at 48 h, associated with the recovery of VD to the baseline level at 72 h. However, mice receiving LNPG treatment significantly reduced the increment of PBR at 3 h. The therapeutic effect of 1-dose LNPG persisted for 6 h while the 2-dose LNPG treatment further reduced PBR and significantly increased VD at 12 h compared to LPS group. This study provides valuable insights into the potential therapeutic benefits of LNPG in mitigating EG degradation in sepsis.</p></div>","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"154 ","pages":"Article 104684"},"PeriodicalIF":2.9000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term efficacy of liposomal nanocarriers of preassembled glycocalyx in restoring cerebral endothelial glycocalyx in sepsis\",\"authors\":\"Shinya Ishiko ,&nbsp;An Huang ,&nbsp;Dong Sun\",\"doi\":\"10.1016/j.mvr.2024.104684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The endothelial glycocalyx (EG) undergoes early degradation in sepsis. Our recent work introduced a novel therapeutic approach involving liposomal nanocarriers of preassembled glycocalyx (LNPG) to restore EG in lipopolysaccharide (LPS)-induced sepsis model of mice. While short-term effects were promising, this study focuses on the long-term impact of LNPG on mouse cerebral microcirculation. Utilizing cranial window, we assessed the stability of vascular density (VD) and perfused boundary region (PBR), an index of EG thickness, over a five-day period in normal control mice. In septic groups (LPS, LPS + 1-dose LNPG, and LPS + 2-dose LNPG), the exposure of mice to LPS significantly reduced VD and increased PBR within 3 h. Without LNPG treatment, PBR returned to the normal control level by endogenous processes at 48 h, associated with the recovery of VD to the baseline level at 72 h. However, mice receiving LNPG treatment significantly reduced the increment of PBR at 3 h. The therapeutic effect of 1-dose LNPG persisted for 6 h while the 2-dose LNPG treatment further reduced PBR and significantly increased VD at 12 h compared to LPS group. This study provides valuable insights into the potential therapeutic benefits of LNPG in mitigating EG degradation in sepsis.</p></div>\",\"PeriodicalId\":18534,\"journal\":{\"name\":\"Microvascular research\",\"volume\":\"154 \",\"pages\":\"Article 104684\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microvascular research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026286224000335\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microvascular research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026286224000335","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

摘要

内皮糖萼(EG)在败血症中会发生早期降解。我们最近的研究提出了一种新的治疗方法,即利用预组装糖萼的脂质体纳米载体(LNPG)来恢复脂多糖(LPS)诱导的败血症模型小鼠的内皮糖萼。虽然短期效果良好,但本研究的重点是 LNPG 对小鼠脑微循环的长期影响。利用颅窗,我们评估了正常对照组小鼠五天内血管密度(VD)和灌注边界区(PBR)的稳定性,这是 EG 厚度的一个指标。在败血症组(LPS、LPS + 1 剂 LNPG 和 LPS + 2 剂 LNPG)中,小鼠暴露于 LPS 后 3 小时内 VD 显著降低,PBR 显著升高;在未接受 LNPG 治疗的情况下,48 小时后 PBR 通过内源性过程恢复到正常对照水平,72 小时后 VD 恢复到基线水平。与 LPS 组相比,1 剂 LNPG 的治疗效果持续了 6 小时,而 2 剂 LNPG 治疗则进一步降低了 PBR,并在 12 小时后显著增加了 VD。这项研究为 LNPG 在脓毒症中缓解 EG 降解的潜在治疗作用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-term efficacy of liposomal nanocarriers of preassembled glycocalyx in restoring cerebral endothelial glycocalyx in sepsis

The endothelial glycocalyx (EG) undergoes early degradation in sepsis. Our recent work introduced a novel therapeutic approach involving liposomal nanocarriers of preassembled glycocalyx (LNPG) to restore EG in lipopolysaccharide (LPS)-induced sepsis model of mice. While short-term effects were promising, this study focuses on the long-term impact of LNPG on mouse cerebral microcirculation. Utilizing cranial window, we assessed the stability of vascular density (VD) and perfused boundary region (PBR), an index of EG thickness, over a five-day period in normal control mice. In septic groups (LPS, LPS + 1-dose LNPG, and LPS + 2-dose LNPG), the exposure of mice to LPS significantly reduced VD and increased PBR within 3 h. Without LNPG treatment, PBR returned to the normal control level by endogenous processes at 48 h, associated with the recovery of VD to the baseline level at 72 h. However, mice receiving LNPG treatment significantly reduced the increment of PBR at 3 h. The therapeutic effect of 1-dose LNPG persisted for 6 h while the 2-dose LNPG treatment further reduced PBR and significantly increased VD at 12 h compared to LPS group. This study provides valuable insights into the potential therapeutic benefits of LNPG in mitigating EG degradation in sepsis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microvascular research
Microvascular research 医学-外周血管病
CiteScore
6.00
自引率
3.20%
发文量
158
审稿时长
43 days
期刊介绍: Microvascular Research is dedicated to the dissemination of fundamental information related to the microvascular field. Full-length articles presenting the results of original research and brief communications are featured. Research Areas include: • Angiogenesis • Biochemistry • Bioengineering • Biomathematics • Biophysics • Cancer • Circulatory homeostasis • Comparative physiology • Drug delivery • Neuropharmacology • Microvascular pathology • Rheology • Tissue Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信