水平磁场中伯德瓦特混合纳米流体流动的热流体力学

IF 2.5 3区 工程技术 Q2 MECHANICS
Amit Kumar Pandey, Abhijit Das
{"title":"水平磁场中伯德瓦特混合纳米流体流动的热流体力学","authors":"Amit Kumar Pandey,&nbsp;Abhijit Das","doi":"10.1016/j.euromechflu.2024.04.011","DOIUrl":null,"url":null,"abstract":"<div><p>Since disks, rotating or stationary, are integral in many thermal systems, such as rotating heat exchangers, thermoelectric coolers, solar energy systems, and geothermal plants, this study scrutinizes the thermohydrodynamics of rotating hybrid nanofluid flow over a stretchable disk at rest. Further, the shape of the nanoparticles and the choice of base fluid substantially impact the enhancement of the heat transfer rate in various such thermal systems. Therefore, the present investigation considers engineered colloids made of four distinct (sphere, cylinder, column, lamina) titania and copper nanoparticle shapes in two different base fluids: water and engine-oil. The problem is formulated mathematically in an externally applied horizontal magnetic field and incorporating a non-Fourier heat flux model in the presence of solar radiation. Analogous to the case of the conventional vertical magnetic field, a similarity solution is also possible when magnetic forces act horizontally, both towards and opposite to the direction of rotation. Thus, the governing partial differential equations (PDEs) are first reduced to a set of highly non-linear and coupled ordinary differential equations (ODEs) via similarity transformations. These resulting set of ODEs are then solved numerically using a rapid and efficient spectral quasilinearization method (SQLM). Obtained results show that lamina-shaped <span><math><mrow><mi>T</mi><mi>i</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi></mrow></math></span>/ engine-oil hybrid-nanofluid is a better choice than the other shapes of nanoparticle suspension in water. The horizontally applied magnetic field exhibits a stronger influence on the flow and heat transfer characteristics when compared to a vertical magnetic field. Additionally increasing the thermal relaxation parameter <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> from 0.1 to 0.35, the Nusselt number boost by 24.44%, 23.41%, 22.54%, and 17.93% for sphere, cylinder, column, and lamina nanoparticles of <span><math><mrow><mi>T</mi><mi>i</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi></mrow></math></span>/water hybrid nanofluid. In the case of <span><math><mrow><mi>T</mi><mi>i</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi></mrow></math></span>/engine-oil hybrid-nanofluid augmenting <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> from 0.1 to 0.35, the Nusselt number rise by 23.95%, 22.83%, 21.82%, and 15.89% for sphere, cylinder, column, and lamina nanoparticles. Based on their increasing <span><math><mrow><mi>N</mi><mi>S</mi></mrow></math></span> and <span><math><mrow><mi>B</mi><mi>e</mi></mrow></math></span> values, the various shapes follow the sequence: lamina ¡ column ¡ cylinder ¡ sphere. Furthermore, entropy generation can be optimized through the augmentation of solar radiation factors <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mtext>SR</mtext></mrow></msub></math></span>, <span><math><mi>δ</mi></math></span>, along with the reduction of the magnetic interaction parameter <span><math><mi>M</mi></math></span>, and by a proper selection of nanoparticle’s shape. Interestingly, dual solutions are observed for the case of a shrinking disk, i.e., for <span><math><mrow><mi>S</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>, and a linear temporal stability analysis reveals that only one of these two branches, namely the first solution branch, is stable and the second branch unstable.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"106 ","pages":"Pages 148-165"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermohydrodynamics of Bödewadt hybrid-nanofluid flow in a horizontal magnetic field\",\"authors\":\"Amit Kumar Pandey,&nbsp;Abhijit Das\",\"doi\":\"10.1016/j.euromechflu.2024.04.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since disks, rotating or stationary, are integral in many thermal systems, such as rotating heat exchangers, thermoelectric coolers, solar energy systems, and geothermal plants, this study scrutinizes the thermohydrodynamics of rotating hybrid nanofluid flow over a stretchable disk at rest. Further, the shape of the nanoparticles and the choice of base fluid substantially impact the enhancement of the heat transfer rate in various such thermal systems. Therefore, the present investigation considers engineered colloids made of four distinct (sphere, cylinder, column, lamina) titania and copper nanoparticle shapes in two different base fluids: water and engine-oil. The problem is formulated mathematically in an externally applied horizontal magnetic field and incorporating a non-Fourier heat flux model in the presence of solar radiation. Analogous to the case of the conventional vertical magnetic field, a similarity solution is also possible when magnetic forces act horizontally, both towards and opposite to the direction of rotation. Thus, the governing partial differential equations (PDEs) are first reduced to a set of highly non-linear and coupled ordinary differential equations (ODEs) via similarity transformations. These resulting set of ODEs are then solved numerically using a rapid and efficient spectral quasilinearization method (SQLM). Obtained results show that lamina-shaped <span><math><mrow><mi>T</mi><mi>i</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi></mrow></math></span>/ engine-oil hybrid-nanofluid is a better choice than the other shapes of nanoparticle suspension in water. The horizontally applied magnetic field exhibits a stronger influence on the flow and heat transfer characteristics when compared to a vertical magnetic field. Additionally increasing the thermal relaxation parameter <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> from 0.1 to 0.35, the Nusselt number boost by 24.44%, 23.41%, 22.54%, and 17.93% for sphere, cylinder, column, and lamina nanoparticles of <span><math><mrow><mi>T</mi><mi>i</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi></mrow></math></span>/water hybrid nanofluid. In the case of <span><math><mrow><mi>T</mi><mi>i</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mi>C</mi><mi>u</mi></mrow></math></span>/engine-oil hybrid-nanofluid augmenting <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> from 0.1 to 0.35, the Nusselt number rise by 23.95%, 22.83%, 21.82%, and 15.89% for sphere, cylinder, column, and lamina nanoparticles. Based on their increasing <span><math><mrow><mi>N</mi><mi>S</mi></mrow></math></span> and <span><math><mrow><mi>B</mi><mi>e</mi></mrow></math></span> values, the various shapes follow the sequence: lamina ¡ column ¡ cylinder ¡ sphere. Furthermore, entropy generation can be optimized through the augmentation of solar radiation factors <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mtext>SR</mtext></mrow></msub></math></span>, <span><math><mi>δ</mi></math></span>, along with the reduction of the magnetic interaction parameter <span><math><mi>M</mi></math></span>, and by a proper selection of nanoparticle’s shape. Interestingly, dual solutions are observed for the case of a shrinking disk, i.e., for <span><math><mrow><mi>S</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>, and a linear temporal stability analysis reveals that only one of these two branches, namely the first solution branch, is stable and the second branch unstable.</p></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":\"106 \",\"pages\":\"Pages 148-165\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997754624000633\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624000633","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

由于旋转或静止的圆盘是许多热系统(如旋转热交换器、热电冷却器、太阳能系统和地热发电厂)不可或缺的组成部分,因此本研究仔细研究了旋转混合纳米流体在静止的可拉伸圆盘上流动的热流体力学。此外,纳米颗粒的形状和基础流体的选择对提高各种此类热系统的传热率有重大影响。因此,本研究考虑了在两种不同的基础流体(水和机油)中由四种不同形状(球形、圆柱形、柱形、薄片形)的二氧化钛和铜纳米粒子组成的工程胶体。该问题在外部施加的水平磁场中进行数学计算,并在存在太阳辐射的情况下采用非傅里叶热通量模型。与传统的垂直磁场类似,当磁力水平作用于旋转方向时,也可以得到类似的解决方案。因此,首先要通过相似性变换,将支配偏微分方程(PDEs)简化为一组高度非线性和耦合的常微分方程(ODEs)。然后使用快速高效的谱准线性化方法(SQLM)对这组 ODE 进行数值求解。结果表明,与水中其他形状的纳米粒子悬浮液相比,层状的 TiO2-Cu/ 发动机油混合纳米流体是更好的选择。与垂直磁场相比,水平磁场对流动和传热特性的影响更大。将热弛豫参数 αt 从 0.1 提高到 0.35 后,TiO2-Cu/水混合纳米流体的球形、圆柱形、柱形和薄片形纳米粒子的努塞尔特数分别提高了 24.44%、23.41%、22.54% 和 17.93%。在将 αt 从 0.1 增加到 0.35 的情况下,TiO2-Cu/发动机油混合纳米流体的球形、圆柱形、柱形和片状纳米粒子的努塞尔特数分别增加了 23.95%、22.83%、21.82% 和 15.89%。根据它们的 NS 值和 Be 值的增加情况,各种形状的纳米粒子依次为:薄片形、柱形、圆柱形和球形。此外,通过增加太阳辐射系数 QSR、δ,降低磁相互作用参数 M,以及适当选择纳米粒子的形状,可以优化熵的产生。有趣的是,在圆盘缩小的情况下,即在 S<0 时,观察到了双重解,而线性时间稳定性分析表明,这两个分支中只有一个,即第一个解分支是稳定的,第二个分支是不稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermohydrodynamics of Bödewadt hybrid-nanofluid flow in a horizontal magnetic field

Since disks, rotating or stationary, are integral in many thermal systems, such as rotating heat exchangers, thermoelectric coolers, solar energy systems, and geothermal plants, this study scrutinizes the thermohydrodynamics of rotating hybrid nanofluid flow over a stretchable disk at rest. Further, the shape of the nanoparticles and the choice of base fluid substantially impact the enhancement of the heat transfer rate in various such thermal systems. Therefore, the present investigation considers engineered colloids made of four distinct (sphere, cylinder, column, lamina) titania and copper nanoparticle shapes in two different base fluids: water and engine-oil. The problem is formulated mathematically in an externally applied horizontal magnetic field and incorporating a non-Fourier heat flux model in the presence of solar radiation. Analogous to the case of the conventional vertical magnetic field, a similarity solution is also possible when magnetic forces act horizontally, both towards and opposite to the direction of rotation. Thus, the governing partial differential equations (PDEs) are first reduced to a set of highly non-linear and coupled ordinary differential equations (ODEs) via similarity transformations. These resulting set of ODEs are then solved numerically using a rapid and efficient spectral quasilinearization method (SQLM). Obtained results show that lamina-shaped TiO2Cu/ engine-oil hybrid-nanofluid is a better choice than the other shapes of nanoparticle suspension in water. The horizontally applied magnetic field exhibits a stronger influence on the flow and heat transfer characteristics when compared to a vertical magnetic field. Additionally increasing the thermal relaxation parameter αt from 0.1 to 0.35, the Nusselt number boost by 24.44%, 23.41%, 22.54%, and 17.93% for sphere, cylinder, column, and lamina nanoparticles of TiO2Cu/water hybrid nanofluid. In the case of TiO2Cu/engine-oil hybrid-nanofluid augmenting αt from 0.1 to 0.35, the Nusselt number rise by 23.95%, 22.83%, 21.82%, and 15.89% for sphere, cylinder, column, and lamina nanoparticles. Based on their increasing NS and Be values, the various shapes follow the sequence: lamina ¡ column ¡ cylinder ¡ sphere. Furthermore, entropy generation can be optimized through the augmentation of solar radiation factors QSR, δ, along with the reduction of the magnetic interaction parameter M, and by a proper selection of nanoparticle’s shape. Interestingly, dual solutions are observed for the case of a shrinking disk, i.e., for S<0, and a linear temporal stability analysis reveals that only one of these two branches, namely the first solution branch, is stable and the second branch unstable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信