{"title":"利用遗传算法自动选择模拟方法的输入变量","authors":"P. Horton, O. Martius, S. Grimm","doi":"10.1029/2023wr035715","DOIUrl":null,"url":null,"abstract":"Analog methods (AMs) have long been used for precipitation prediction and climate studies. However, they rely on manual selections of parameters, such as predictor variables and analogy criteria. Previous work showed the potential of genetic algorithms (GAs) to optimize most of the AM parameters. This research goes one step further and investigates the potential of GAs for automating the selection of the input variables and the analogy criteria (distance metric between two data fields) in AMs. Our study focuses on the prediction of daily precipitation in central Europe, specifically Switzerland, as a representative case. Comparative analysis against established methods demonstrates the superiority of GA‐optimized AMs in terms of predictive accuracy. The selected input variables exhibit strong associations with key meteorological processes that influence the generation of precipitation. Further, we identify a new analogy criterion inspired by the Teweles‐Wobus criterion, which consistently performs better than other Euclidean distances and could be used in classic AMs. In contrast to conventional stepwise selection approaches, GA‐optimized AMs display a preference for a flatter structure characterized by a single level of analogy and an increased number of variables. Overall, our study demonstrates the successful application of GAs in automating input variable selection for AMs, with potential implications for application in diverse locations and data exploration to predict alternative predictands. In a broader context, GAs could be used to perform input variable selection in other data‐driven methods, opening perspectives for a broad range of applications.","PeriodicalId":507642,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Input Variable Selection for Analog Methods Using Genetic Algorithms\",\"authors\":\"P. Horton, O. Martius, S. Grimm\",\"doi\":\"10.1029/2023wr035715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analog methods (AMs) have long been used for precipitation prediction and climate studies. However, they rely on manual selections of parameters, such as predictor variables and analogy criteria. Previous work showed the potential of genetic algorithms (GAs) to optimize most of the AM parameters. This research goes one step further and investigates the potential of GAs for automating the selection of the input variables and the analogy criteria (distance metric between two data fields) in AMs. Our study focuses on the prediction of daily precipitation in central Europe, specifically Switzerland, as a representative case. Comparative analysis against established methods demonstrates the superiority of GA‐optimized AMs in terms of predictive accuracy. The selected input variables exhibit strong associations with key meteorological processes that influence the generation of precipitation. Further, we identify a new analogy criterion inspired by the Teweles‐Wobus criterion, which consistently performs better than other Euclidean distances and could be used in classic AMs. In contrast to conventional stepwise selection approaches, GA‐optimized AMs display a preference for a flatter structure characterized by a single level of analogy and an increased number of variables. Overall, our study demonstrates the successful application of GAs in automating input variable selection for AMs, with potential implications for application in diverse locations and data exploration to predict alternative predictands. In a broader context, GAs could be used to perform input variable selection in other data‐driven methods, opening perspectives for a broad range of applications.\",\"PeriodicalId\":507642,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr035715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023wr035715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
模拟法(AMs)长期以来一直用于降水预测和气候研究。然而,它们依赖于人工选择参数,如预测变量和类比标准。之前的研究表明,遗传算法(GA)具有优化大部分 AM 参数的潜力。本研究则更进一步,研究了遗传算法在自动监测中自动选择输入变量和类比标准(两个数据字段之间的距离度量)的潜力。我们的研究以欧洲中部(特别是瑞士)的日降水量预测为代表性案例。与已有方法的对比分析表明,GA 优化的 AM 在预测准确性方面更具优势。所选输入变量与影响降水生成的关键气象过程有密切联系。此外,我们受 Teweles-Wobus 准则的启发,确定了一种新的类比准则,其性能始终优于其他欧氏距离,可用于经典的 AMs。与传统的逐步选择方法相比,GA 优化的 AMs 更倾向于以单级类比和增加变量数量为特征的扁平结构。总之,我们的研究证明了在自动测试输入变量选择自动化中应用遗传算法是成功的,这对应用于不同地点和数据探索以预测替代预测因子具有潜在的意义。在更广泛的背景下,遗传效应可以用于在其他数据驱动方法中执行输入变量选择,为广泛的应用开辟前景。
Automated Input Variable Selection for Analog Methods Using Genetic Algorithms
Analog methods (AMs) have long been used for precipitation prediction and climate studies. However, they rely on manual selections of parameters, such as predictor variables and analogy criteria. Previous work showed the potential of genetic algorithms (GAs) to optimize most of the AM parameters. This research goes one step further and investigates the potential of GAs for automating the selection of the input variables and the analogy criteria (distance metric between two data fields) in AMs. Our study focuses on the prediction of daily precipitation in central Europe, specifically Switzerland, as a representative case. Comparative analysis against established methods demonstrates the superiority of GA‐optimized AMs in terms of predictive accuracy. The selected input variables exhibit strong associations with key meteorological processes that influence the generation of precipitation. Further, we identify a new analogy criterion inspired by the Teweles‐Wobus criterion, which consistently performs better than other Euclidean distances and could be used in classic AMs. In contrast to conventional stepwise selection approaches, GA‐optimized AMs display a preference for a flatter structure characterized by a single level of analogy and an increased number of variables. Overall, our study demonstrates the successful application of GAs in automating input variable selection for AMs, with potential implications for application in diverse locations and data exploration to predict alternative predictands. In a broader context, GAs could be used to perform input variable selection in other data‐driven methods, opening perspectives for a broad range of applications.