{"title":"哨兵-2 图像用于石墨矿床勘探的能力评估","authors":"Muhittin Karaman","doi":"10.1016/j.chemer.2024.126117","DOIUrl":null,"url":null,"abstract":"<div><div><span><span>Graphite, a critical raw material for high-technology industries, is used as an anode in lithium-ion batteries due to its high thermal and electrical conductivity and high-temperature resistance. The study evaluates the use of Sentinel-2 satellite images in exploring new graphite deposits, demonstrating the effectiveness of remote sensing methods<span> and comparing different classification methods. It also introduces new graphite indices, the Normalized Difference Graphite Index (NDGI) and the Graphite Band Math Index (GBMI), which differentiate the spectral signatures<span> of graphite mineralization from other land cover spectral signatures. The study focuses on creating a reference graphite mineralization spectral library, developing an image-based optimum graphite spectral library from Sentinel-2 satellite images, evaluating the performance of Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Constrained Energy Minimization (CEM) classification methods, and selecting suitable threshold values for classification. The Kütahya-Oysu Graphite Mine in Turkey was chosen as the training area, while other test sites include Xinghe-Huangtuyao Graphite Mine (Inner Mongolia, China), the Pingdu Graphite Deposit (Shandong, China), the Jixi-Liumao Graphite Deposit (Heilongjiang, China), the Luobei-Yunshan Graphite Deposit (Heilongjiang, China), the Balama Graphite Project (Mozambique), and the Molo Graphite Project (Madagascar). In Oysu, a significant graphite deposit in Turkey, graphite ore is formed in metamorphic graphite schist and graphite-bearing muscovite schist. The Oysu's graphite ore is microcrystalline and macrocrystalline type of graphite and displays unique absorption at 704 and 2225 nm of full-spectrum wavelengths, as well as at 740 or 783 nm of the spectral detection range of Sentinel-2. The Sentinel-2 sensor, which has been widely used in geological applications, produces useful data for graphite exploration on a large scale. Sentinel-2's high </span></span></span>spectral resolution in the VNIR region makes it useful for exploring graphite deposits. Data-driven approaches like NDGI and GBMIs indices reveal graphite-related mineralization areas, while </span>supervised classification methods map graphite ratios using reference end-member spectral. A knowledge-based probabilistic algorithm, SID, measures spectral discrepancy probability, resulting in more successful graphite mineralization mapping. Lower threshold values (0.050–0.060) increase the probability of pure graphite areas.</div></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 4","pages":"Article 126117"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capability assessment of Sentinel-2 imagery for graphite deposits exploration\",\"authors\":\"Muhittin Karaman\",\"doi\":\"10.1016/j.chemer.2024.126117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span><span>Graphite, a critical raw material for high-technology industries, is used as an anode in lithium-ion batteries due to its high thermal and electrical conductivity and high-temperature resistance. The study evaluates the use of Sentinel-2 satellite images in exploring new graphite deposits, demonstrating the effectiveness of remote sensing methods<span> and comparing different classification methods. It also introduces new graphite indices, the Normalized Difference Graphite Index (NDGI) and the Graphite Band Math Index (GBMI), which differentiate the spectral signatures<span> of graphite mineralization from other land cover spectral signatures. The study focuses on creating a reference graphite mineralization spectral library, developing an image-based optimum graphite spectral library from Sentinel-2 satellite images, evaluating the performance of Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Constrained Energy Minimization (CEM) classification methods, and selecting suitable threshold values for classification. The Kütahya-Oysu Graphite Mine in Turkey was chosen as the training area, while other test sites include Xinghe-Huangtuyao Graphite Mine (Inner Mongolia, China), the Pingdu Graphite Deposit (Shandong, China), the Jixi-Liumao Graphite Deposit (Heilongjiang, China), the Luobei-Yunshan Graphite Deposit (Heilongjiang, China), the Balama Graphite Project (Mozambique), and the Molo Graphite Project (Madagascar). In Oysu, a significant graphite deposit in Turkey, graphite ore is formed in metamorphic graphite schist and graphite-bearing muscovite schist. The Oysu's graphite ore is microcrystalline and macrocrystalline type of graphite and displays unique absorption at 704 and 2225 nm of full-spectrum wavelengths, as well as at 740 or 783 nm of the spectral detection range of Sentinel-2. The Sentinel-2 sensor, which has been widely used in geological applications, produces useful data for graphite exploration on a large scale. Sentinel-2's high </span></span></span>spectral resolution in the VNIR region makes it useful for exploring graphite deposits. Data-driven approaches like NDGI and GBMIs indices reveal graphite-related mineralization areas, while </span>supervised classification methods map graphite ratios using reference end-member spectral. A knowledge-based probabilistic algorithm, SID, measures spectral discrepancy probability, resulting in more successful graphite mineralization mapping. Lower threshold values (0.050–0.060) increase the probability of pure graphite areas.</div></div>\",\"PeriodicalId\":55973,\"journal\":{\"name\":\"Chemie Der Erde-Geochemistry\",\"volume\":\"84 4\",\"pages\":\"Article 126117\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemie Der Erde-Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009281924000412\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Der Erde-Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009281924000412","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Capability assessment of Sentinel-2 imagery for graphite deposits exploration
Graphite, a critical raw material for high-technology industries, is used as an anode in lithium-ion batteries due to its high thermal and electrical conductivity and high-temperature resistance. The study evaluates the use of Sentinel-2 satellite images in exploring new graphite deposits, demonstrating the effectiveness of remote sensing methods and comparing different classification methods. It also introduces new graphite indices, the Normalized Difference Graphite Index (NDGI) and the Graphite Band Math Index (GBMI), which differentiate the spectral signatures of graphite mineralization from other land cover spectral signatures. The study focuses on creating a reference graphite mineralization spectral library, developing an image-based optimum graphite spectral library from Sentinel-2 satellite images, evaluating the performance of Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Constrained Energy Minimization (CEM) classification methods, and selecting suitable threshold values for classification. The Kütahya-Oysu Graphite Mine in Turkey was chosen as the training area, while other test sites include Xinghe-Huangtuyao Graphite Mine (Inner Mongolia, China), the Pingdu Graphite Deposit (Shandong, China), the Jixi-Liumao Graphite Deposit (Heilongjiang, China), the Luobei-Yunshan Graphite Deposit (Heilongjiang, China), the Balama Graphite Project (Mozambique), and the Molo Graphite Project (Madagascar). In Oysu, a significant graphite deposit in Turkey, graphite ore is formed in metamorphic graphite schist and graphite-bearing muscovite schist. The Oysu's graphite ore is microcrystalline and macrocrystalline type of graphite and displays unique absorption at 704 and 2225 nm of full-spectrum wavelengths, as well as at 740 or 783 nm of the spectral detection range of Sentinel-2. The Sentinel-2 sensor, which has been widely used in geological applications, produces useful data for graphite exploration on a large scale. Sentinel-2's high spectral resolution in the VNIR region makes it useful for exploring graphite deposits. Data-driven approaches like NDGI and GBMIs indices reveal graphite-related mineralization areas, while supervised classification methods map graphite ratios using reference end-member spectral. A knowledge-based probabilistic algorithm, SID, measures spectral discrepancy probability, resulting in more successful graphite mineralization mapping. Lower threshold values (0.050–0.060) increase the probability of pure graphite areas.
期刊介绍:
GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics.
GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences.
The following topics are covered by the expertise of the members of the editorial board (see below):
-cosmochemistry, meteoritics-
igneous, metamorphic, and sedimentary petrology-
volcanology-
low & high temperature geochemistry-
experimental - theoretical - field related studies-
mineralogy - crystallography-
environmental geosciences-
archaeometry