{"title":"对水平圆柱体附近微极性纳米流体流动的粘度/导热性的深入研究","authors":"N. S. Elgazery, Nader Y. Abd Elazem","doi":"10.1166/jon.2024.2155","DOIUrl":null,"url":null,"abstract":"The purpose of this study is examining the changes in viscosity and thermal conductivity of a micropolar nanofluid on a horizontal cylinder, specifically on the axisymmetric stagnation inflow. Nanofluid viscosity is known to exhibit an exponential change with temperature, while thermal\n conductivity was found as a linear with temperature to enhance the heat transfer rates of nanofluid flow by numerical calculations. A horizontal circular cylinder with an axisymmetric stationary point was the subject of the mathematical model, which described an incompressible, constant micropolar\n nanofluid flow over it. The importance of predicting heat and mass transfer for a horizontal cylinder are common in many applications, including refrigerator condensers and flat-plate solar collectors. For this reason, it is imperative to study heat and mass transfer in horizontal cylinder\n geometries. Furthermore, taken into account were fluid temperature factors like nanofluid viscosity and micro-rotation viscosity. It introduced aluminum oxide nanoparticles to two common fluids: pure water and ethylene glycol. It was capable of to estimate the pressure gradient profiles, temperature\n gradient profiles, shear stress, Nusselt number, angular and azimuthal velocities, and curvature parameters for various numerical values of micropolar, variable viscosity/thermal conductivity, and curvature. An exact match is found in a table that contrasts the current numerical computation\n with the published data. Based on our simulation results, it seems that the temperature profile variation for both pure water with alumina nanoparticles and ethylene glycol is significantly influenced by the Reynolds number and the viscosity/thermal conductivity characteristics of the nanofluid.\n Nevertheless, the micropolar parameter barely makes a difference. Furthermore, the concavity of the pressure profiles is pushed upwards, and it appears that the pressure biographies for ethylene glycol are more pressure-intensive than those for pure water. By increasing the value of the variable\n viscosity parameter of the nanofluids, it can be achieved to discern clearly between the angular velocity profiles in the two scenarios. Engineers and researchers working on propulsion technology for missiles, airplanes, and spacecraft can especially benefit from these perceptions.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights Into Viscosity/Thermal Conductivity of a Micropolar Nanofluid Flow Near a Horizontal Cylinder\",\"authors\":\"N. S. Elgazery, Nader Y. Abd Elazem\",\"doi\":\"10.1166/jon.2024.2155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is examining the changes in viscosity and thermal conductivity of a micropolar nanofluid on a horizontal cylinder, specifically on the axisymmetric stagnation inflow. Nanofluid viscosity is known to exhibit an exponential change with temperature, while thermal\\n conductivity was found as a linear with temperature to enhance the heat transfer rates of nanofluid flow by numerical calculations. A horizontal circular cylinder with an axisymmetric stationary point was the subject of the mathematical model, which described an incompressible, constant micropolar\\n nanofluid flow over it. The importance of predicting heat and mass transfer for a horizontal cylinder are common in many applications, including refrigerator condensers and flat-plate solar collectors. For this reason, it is imperative to study heat and mass transfer in horizontal cylinder\\n geometries. Furthermore, taken into account were fluid temperature factors like nanofluid viscosity and micro-rotation viscosity. It introduced aluminum oxide nanoparticles to two common fluids: pure water and ethylene glycol. It was capable of to estimate the pressure gradient profiles, temperature\\n gradient profiles, shear stress, Nusselt number, angular and azimuthal velocities, and curvature parameters for various numerical values of micropolar, variable viscosity/thermal conductivity, and curvature. An exact match is found in a table that contrasts the current numerical computation\\n with the published data. Based on our simulation results, it seems that the temperature profile variation for both pure water with alumina nanoparticles and ethylene glycol is significantly influenced by the Reynolds number and the viscosity/thermal conductivity characteristics of the nanofluid.\\n Nevertheless, the micropolar parameter barely makes a difference. Furthermore, the concavity of the pressure profiles is pushed upwards, and it appears that the pressure biographies for ethylene glycol are more pressure-intensive than those for pure water. By increasing the value of the variable\\n viscosity parameter of the nanofluids, it can be achieved to discern clearly between the angular velocity profiles in the two scenarios. Engineers and researchers working on propulsion technology for missiles, airplanes, and spacecraft can especially benefit from these perceptions.\",\"PeriodicalId\":47161,\"journal\":{\"name\":\"Journal of Nanofluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jon.2024.2155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2024.2155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Insights Into Viscosity/Thermal Conductivity of a Micropolar Nanofluid Flow Near a Horizontal Cylinder
The purpose of this study is examining the changes in viscosity and thermal conductivity of a micropolar nanofluid on a horizontal cylinder, specifically on the axisymmetric stagnation inflow. Nanofluid viscosity is known to exhibit an exponential change with temperature, while thermal
conductivity was found as a linear with temperature to enhance the heat transfer rates of nanofluid flow by numerical calculations. A horizontal circular cylinder with an axisymmetric stationary point was the subject of the mathematical model, which described an incompressible, constant micropolar
nanofluid flow over it. The importance of predicting heat and mass transfer for a horizontal cylinder are common in many applications, including refrigerator condensers and flat-plate solar collectors. For this reason, it is imperative to study heat and mass transfer in horizontal cylinder
geometries. Furthermore, taken into account were fluid temperature factors like nanofluid viscosity and micro-rotation viscosity. It introduced aluminum oxide nanoparticles to two common fluids: pure water and ethylene glycol. It was capable of to estimate the pressure gradient profiles, temperature
gradient profiles, shear stress, Nusselt number, angular and azimuthal velocities, and curvature parameters for various numerical values of micropolar, variable viscosity/thermal conductivity, and curvature. An exact match is found in a table that contrasts the current numerical computation
with the published data. Based on our simulation results, it seems that the temperature profile variation for both pure water with alumina nanoparticles and ethylene glycol is significantly influenced by the Reynolds number and the viscosity/thermal conductivity characteristics of the nanofluid.
Nevertheless, the micropolar parameter barely makes a difference. Furthermore, the concavity of the pressure profiles is pushed upwards, and it appears that the pressure biographies for ethylene glycol are more pressure-intensive than those for pure water. By increasing the value of the variable
viscosity parameter of the nanofluids, it can be achieved to discern clearly between the angular velocity profiles in the two scenarios. Engineers and researchers working on propulsion technology for missiles, airplanes, and spacecraft can especially benefit from these perceptions.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.