卷积神经网络超参数优化技术系统综述

Mohaimenul Azam Khan Raiaan , Sadman Sakib , Nur Mohammad Fahad , Abdullah Al Mamun , Md. Anisur Rahman , Swakkhar Shatabda , Md. Saddam Hossain Mukta
{"title":"卷积神经网络超参数优化技术系统综述","authors":"Mohaimenul Azam Khan Raiaan ,&nbsp;Sadman Sakib ,&nbsp;Nur Mohammad Fahad ,&nbsp;Abdullah Al Mamun ,&nbsp;Md. Anisur Rahman ,&nbsp;Swakkhar Shatabda ,&nbsp;Md. Saddam Hossain Mukta","doi":"10.1016/j.dajour.2024.100470","DOIUrl":null,"url":null,"abstract":"<div><p>Convolutional Neural Network (CNN) is a prevalent topic in deep learning (DL) research for their architectural advantages. CNN relies heavily on hyperparameter configurations, and manually tuning these hyperparameters can be time-consuming for researchers, therefore we need efficient optimization techniques. In this systematic review, we explore a range of well used algorithms, including metaheuristic, statistical, sequential, and numerical approaches, to fine-tune CNN hyperparameters. Our research offers an exhaustive categorization of these hyperparameter optimization (HPO) algorithms and investigates the fundamental concepts of CNN, explaining the role of hyperparameters and their variants. Furthermore, an exhaustive literature review of HPO algorithms in CNN employing the above mentioned algorithms is undertaken. A comparative analysis is conducted based on their HPO strategies, error evaluation approaches, and accuracy results across various datasets to assess the efficacy of these methods. In addition to addressing current challenges in HPO, our research illuminates unresolved issues in the field. By providing insightful evaluations of the merits and demerits of various HPO algorithms, our objective is to assist researchers in determining a suitable method for a particular problem and dataset. By highlighting future research directions and synthesizing diversified knowledge, our survey contributes significantly to the ongoing development of CNN hyperparameter optimization.</p></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"11 ","pages":"Article 100470"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772662224000742/pdfft?md5=bcf7d25d36917a6db2d67b9e06bf7bec&pid=1-s2.0-S2772662224000742-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A systematic review of hyperparameter optimization techniques in Convolutional Neural Networks\",\"authors\":\"Mohaimenul Azam Khan Raiaan ,&nbsp;Sadman Sakib ,&nbsp;Nur Mohammad Fahad ,&nbsp;Abdullah Al Mamun ,&nbsp;Md. Anisur Rahman ,&nbsp;Swakkhar Shatabda ,&nbsp;Md. Saddam Hossain Mukta\",\"doi\":\"10.1016/j.dajour.2024.100470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Convolutional Neural Network (CNN) is a prevalent topic in deep learning (DL) research for their architectural advantages. CNN relies heavily on hyperparameter configurations, and manually tuning these hyperparameters can be time-consuming for researchers, therefore we need efficient optimization techniques. In this systematic review, we explore a range of well used algorithms, including metaheuristic, statistical, sequential, and numerical approaches, to fine-tune CNN hyperparameters. Our research offers an exhaustive categorization of these hyperparameter optimization (HPO) algorithms and investigates the fundamental concepts of CNN, explaining the role of hyperparameters and their variants. Furthermore, an exhaustive literature review of HPO algorithms in CNN employing the above mentioned algorithms is undertaken. A comparative analysis is conducted based on their HPO strategies, error evaluation approaches, and accuracy results across various datasets to assess the efficacy of these methods. In addition to addressing current challenges in HPO, our research illuminates unresolved issues in the field. By providing insightful evaluations of the merits and demerits of various HPO algorithms, our objective is to assist researchers in determining a suitable method for a particular problem and dataset. By highlighting future research directions and synthesizing diversified knowledge, our survey contributes significantly to the ongoing development of CNN hyperparameter optimization.</p></div>\",\"PeriodicalId\":100357,\"journal\":{\"name\":\"Decision Analytics Journal\",\"volume\":\"11 \",\"pages\":\"Article 100470\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772662224000742/pdfft?md5=bcf7d25d36917a6db2d67b9e06bf7bec&pid=1-s2.0-S2772662224000742-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Analytics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772662224000742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662224000742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)因其架构优势而成为深度学习(DL)研究的热门话题。卷积神经网络在很大程度上依赖于超参数配置,而手动调整这些超参数对于研究人员来说非常耗时,因此我们需要高效的优化技术。在这篇系统综述中,我们探讨了一系列广泛使用的算法,包括元启发式、统计、序列和数值方法,用于微调 CNN 超参数。我们的研究对这些超参数优化 (HPO) 算法进行了详尽的分类,并研究了 CNN 的基本概念,解释了超参数及其变体的作用。此外,还对采用上述算法的 CNN 中的 HPO 算法进行了详尽的文献综述。根据其 HPO 策略、误差评估方法和各种数据集的准确性结果进行了比较分析,以评估这些方法的功效。除了应对当前 HPO 面临的挑战,我们的研究还揭示了该领域尚未解决的问题。通过对各种 HPO 算法的优缺点进行深入评估,我们的目标是帮助研究人员确定适合特定问题和数据集的方法。通过强调未来的研究方向和综合各种知识,我们的调查报告为 CNN 超参数优化的持续发展做出了重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic review of hyperparameter optimization techniques in Convolutional Neural Networks

Convolutional Neural Network (CNN) is a prevalent topic in deep learning (DL) research for their architectural advantages. CNN relies heavily on hyperparameter configurations, and manually tuning these hyperparameters can be time-consuming for researchers, therefore we need efficient optimization techniques. In this systematic review, we explore a range of well used algorithms, including metaheuristic, statistical, sequential, and numerical approaches, to fine-tune CNN hyperparameters. Our research offers an exhaustive categorization of these hyperparameter optimization (HPO) algorithms and investigates the fundamental concepts of CNN, explaining the role of hyperparameters and their variants. Furthermore, an exhaustive literature review of HPO algorithms in CNN employing the above mentioned algorithms is undertaken. A comparative analysis is conducted based on their HPO strategies, error evaluation approaches, and accuracy results across various datasets to assess the efficacy of these methods. In addition to addressing current challenges in HPO, our research illuminates unresolved issues in the field. By providing insightful evaluations of the merits and demerits of various HPO algorithms, our objective is to assist researchers in determining a suitable method for a particular problem and dataset. By highlighting future research directions and synthesizing diversified knowledge, our survey contributes significantly to the ongoing development of CNN hyperparameter optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信