基于边缘检测早期物联网僵尸网络的模块化神经网络

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Duaa Alqattan , Varun Ojha , Fawzy Habib , Ayman Noor , Graham Morgan , Rajiv Ranjan
{"title":"基于边缘检测早期物联网僵尸网络的模块化神经网络","authors":"Duaa Alqattan ,&nbsp;Varun Ojha ,&nbsp;Fawzy Habib ,&nbsp;Ayman Noor ,&nbsp;Graham Morgan ,&nbsp;Rajiv Ranjan","doi":"10.1016/j.hcc.2024.100230","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet of Things (IoT) has led to rapid growth in smart cities. However, IoT botnet-based attacks against smart city systems are becoming more prevalent. Detection methods for IoT botnet-based attacks have been the subject of extensive research, but the identification of early-stage behaviour of the IoT botnet prior to any attack remains a largely unexplored area that could prevent any attack before it is launched. Few studies have addressed the early stages of IoT botnet detection using monolithic deep learning algorithms that could require more time for training and detection. We, however, propose an edge-based deep learning system for the detection of the early stages of IoT botnets in smart cities. The proposed system, which we call EDIT (<u>E</u>dge-based <u>D</u>etection of early-stage <u>I</u>oT Botne<u>t</u>), aims to detect abnormalities in network communication traffic caused by early-stage IoT botnets based on the modular neural network (MNN) method at multi-access edge computing (MEC) servers. MNN can improve detection accuracy and efficiency by leveraging parallel computing on MEC. According to the findings, EDIT has a lower false-negative rate compared to a monolithic approach and other studies. At the MEC server, EDIT takes as little as 16 ms for the detection of an IoT botnet.</div></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"5 1","pages":"Article 100230"},"PeriodicalIF":3.2000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular neural network for edge-based detection of early-stage IoT botnet\",\"authors\":\"Duaa Alqattan ,&nbsp;Varun Ojha ,&nbsp;Fawzy Habib ,&nbsp;Ayman Noor ,&nbsp;Graham Morgan ,&nbsp;Rajiv Ranjan\",\"doi\":\"10.1016/j.hcc.2024.100230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Internet of Things (IoT) has led to rapid growth in smart cities. However, IoT botnet-based attacks against smart city systems are becoming more prevalent. Detection methods for IoT botnet-based attacks have been the subject of extensive research, but the identification of early-stage behaviour of the IoT botnet prior to any attack remains a largely unexplored area that could prevent any attack before it is launched. Few studies have addressed the early stages of IoT botnet detection using monolithic deep learning algorithms that could require more time for training and detection. We, however, propose an edge-based deep learning system for the detection of the early stages of IoT botnets in smart cities. The proposed system, which we call EDIT (<u>E</u>dge-based <u>D</u>etection of early-stage <u>I</u>oT Botne<u>t</u>), aims to detect abnormalities in network communication traffic caused by early-stage IoT botnets based on the modular neural network (MNN) method at multi-access edge computing (MEC) servers. MNN can improve detection accuracy and efficiency by leveraging parallel computing on MEC. According to the findings, EDIT has a lower false-negative rate compared to a monolithic approach and other studies. At the MEC server, EDIT takes as little as 16 ms for the detection of an IoT botnet.</div></div>\",\"PeriodicalId\":100605,\"journal\":{\"name\":\"High-Confidence Computing\",\"volume\":\"5 1\",\"pages\":\"Article 100230\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Confidence Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667295224000333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295224000333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular neural network for edge-based detection of early-stage IoT botnet
The Internet of Things (IoT) has led to rapid growth in smart cities. However, IoT botnet-based attacks against smart city systems are becoming more prevalent. Detection methods for IoT botnet-based attacks have been the subject of extensive research, but the identification of early-stage behaviour of the IoT botnet prior to any attack remains a largely unexplored area that could prevent any attack before it is launched. Few studies have addressed the early stages of IoT botnet detection using monolithic deep learning algorithms that could require more time for training and detection. We, however, propose an edge-based deep learning system for the detection of the early stages of IoT botnets in smart cities. The proposed system, which we call EDIT (Edge-based Detection of early-stage IoT Botnet), aims to detect abnormalities in network communication traffic caused by early-stage IoT botnets based on the modular neural network (MNN) method at multi-access edge computing (MEC) servers. MNN can improve detection accuracy and efficiency by leveraging parallel computing on MEC. According to the findings, EDIT has a lower false-negative rate compared to a monolithic approach and other studies. At the MEC server, EDIT takes as little as 16 ms for the detection of an IoT botnet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信