Renping Liu , Guang Hu , Zhiwei Liao , Jian Cao , Qian Pang , Fansheng Meng
{"title":"中国四川盆地T-OAE爆发期间的海洋入侵:来自绿色粘土矿物和碳酸盐凝块的证据","authors":"Renping Liu , Guang Hu , Zhiwei Liao , Jian Cao , Qian Pang , Fansheng Meng","doi":"10.1016/j.sedgeo.2024.106647","DOIUrl":null,"url":null,"abstract":"<div><p>A high-amplitude global sea level rose rapidly during the early Toarcian (Early Jurassic), making the transgression deposits potential stratigraphic correlation markers of marine and terrestrial successions. Green clay minerals (i.e., glauconite and chamosite), carbonate concretions, and geochemical database associated with the early Toarcian global transgression are archived in the Lower Jurassic Da'anzhai Member (the Early Toarcian age) in the Sichuan Basin of China, a mega lake along the Tethys Ocean. The fine-grained glauconites with high Al and low Si contents suggested that they were transported from offshore to the lake by marine incursion and were oxidized during the transport processes. The green authigenic chamosite cement and redeposited chamosite grains with high Mg/Fe and low Al/Si ratios were diagenetically transformed from berthierine formed in the brackish water caused by marine incursion. The chemically impure siderite concretions with low <sup>87</sup>Sr/<sup>86</sup>Sr ratios and high <em>δ</em><sup>13</sup>C values suggested that the lake water and sediment pore waters were mixed with seawater. Coeval calcareous concretions have low <sup>87</sup>Sr/<sup>86</sup>Sr ratios and high <em>δ</em><sup>13</sup>C values, indicating the mixing of lake water with seawater. Combining the stratigraphic low <sup>87</sup>Sr/<sup>86</sup>Sr values, we suggested that there was a marine incursion into the Sichuan Basin. According to the organic carbon isotopic stratigraphy correlation, the marine incursion occurred during the onset of T-OAE. The rapid and high-amplitude global sea-level rise may have caused this marine incursion.</p></div>","PeriodicalId":21575,"journal":{"name":"Sedimentary Geology","volume":"466 ","pages":"Article 106647"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A marine incursion during the onset of T-OAE in Sichuan Basin, China: Evidence from green clay minerals and carbonate concretions\",\"authors\":\"Renping Liu , Guang Hu , Zhiwei Liao , Jian Cao , Qian Pang , Fansheng Meng\",\"doi\":\"10.1016/j.sedgeo.2024.106647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A high-amplitude global sea level rose rapidly during the early Toarcian (Early Jurassic), making the transgression deposits potential stratigraphic correlation markers of marine and terrestrial successions. Green clay minerals (i.e., glauconite and chamosite), carbonate concretions, and geochemical database associated with the early Toarcian global transgression are archived in the Lower Jurassic Da'anzhai Member (the Early Toarcian age) in the Sichuan Basin of China, a mega lake along the Tethys Ocean. The fine-grained glauconites with high Al and low Si contents suggested that they were transported from offshore to the lake by marine incursion and were oxidized during the transport processes. The green authigenic chamosite cement and redeposited chamosite grains with high Mg/Fe and low Al/Si ratios were diagenetically transformed from berthierine formed in the brackish water caused by marine incursion. The chemically impure siderite concretions with low <sup>87</sup>Sr/<sup>86</sup>Sr ratios and high <em>δ</em><sup>13</sup>C values suggested that the lake water and sediment pore waters were mixed with seawater. Coeval calcareous concretions have low <sup>87</sup>Sr/<sup>86</sup>Sr ratios and high <em>δ</em><sup>13</sup>C values, indicating the mixing of lake water with seawater. Combining the stratigraphic low <sup>87</sup>Sr/<sup>86</sup>Sr values, we suggested that there was a marine incursion into the Sichuan Basin. According to the organic carbon isotopic stratigraphy correlation, the marine incursion occurred during the onset of T-OAE. The rapid and high-amplitude global sea-level rise may have caused this marine incursion.</p></div>\",\"PeriodicalId\":21575,\"journal\":{\"name\":\"Sedimentary Geology\",\"volume\":\"466 \",\"pages\":\"Article 106647\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sedimentary Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0037073824000708\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sedimentary Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0037073824000708","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
A marine incursion during the onset of T-OAE in Sichuan Basin, China: Evidence from green clay minerals and carbonate concretions
A high-amplitude global sea level rose rapidly during the early Toarcian (Early Jurassic), making the transgression deposits potential stratigraphic correlation markers of marine and terrestrial successions. Green clay minerals (i.e., glauconite and chamosite), carbonate concretions, and geochemical database associated with the early Toarcian global transgression are archived in the Lower Jurassic Da'anzhai Member (the Early Toarcian age) in the Sichuan Basin of China, a mega lake along the Tethys Ocean. The fine-grained glauconites with high Al and low Si contents suggested that they were transported from offshore to the lake by marine incursion and were oxidized during the transport processes. The green authigenic chamosite cement and redeposited chamosite grains with high Mg/Fe and low Al/Si ratios were diagenetically transformed from berthierine formed in the brackish water caused by marine incursion. The chemically impure siderite concretions with low 87Sr/86Sr ratios and high δ13C values suggested that the lake water and sediment pore waters were mixed with seawater. Coeval calcareous concretions have low 87Sr/86Sr ratios and high δ13C values, indicating the mixing of lake water with seawater. Combining the stratigraphic low 87Sr/86Sr values, we suggested that there was a marine incursion into the Sichuan Basin. According to the organic carbon isotopic stratigraphy correlation, the marine incursion occurred during the onset of T-OAE. The rapid and high-amplitude global sea-level rise may have caused this marine incursion.
期刊介绍:
Sedimentary Geology is a journal that rapidly publishes high quality, original research and review papers that cover all aspects of sediments and sedimentary rocks at all spatial and temporal scales. Submitted papers must make a significant contribution to the field of study and must place the research in a broad context, so that it is of interest to the diverse, international readership of the journal. Papers that are largely descriptive in nature, of limited scope or local geographical significance, or based on limited data will not be considered for publication.