确定噪声热声系统调控参数的 PINN 方法

Hwijae Son, Minwoo Lee
{"title":"确定噪声热声系统调控参数的 PINN 方法","authors":"Hwijae Son, Minwoo Lee","doi":"10.1017/jfm.2024.219","DOIUrl":null,"url":null,"abstract":"Identifying the governing parameters of self-sustained oscillation is crucial for the diagnosis, prediction and control of thermoacoustic instabilities. In this paper, we propose and validate a novel method for computing the parameters of thermoacoustic oscillation in a stochastic environment, which exploits a physics-informed neural network (PINN). Specifically, we introduce a negative log-likelihood loss function that integrates the stochastic samples and the solution of the Fokker–Planck equation. The proposed framework is validated using the numerically generated signal and the experimental data obtained from an annular combustor, both before and after the supercritical Hopf bifurcation. The results of PINN-based system identification show good agreement with the actual system parameters and the original stochastic signal, with improved accuracy compared to established methods. To the best of our knowledge, this study constitutes the first demonstration of the PINN-inverse approach that uses the noise-induced dynamics of thermoacoustic systems, opening up new pathways for diagnosing and predicting the thermoacoustic behaviour of various combustion systems.","PeriodicalId":505053,"journal":{"name":"Journal of Fluid Mechanics","volume":"329 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PINN approach for identifying governing parameters of noisy thermoacoustic systems\",\"authors\":\"Hwijae Son, Minwoo Lee\",\"doi\":\"10.1017/jfm.2024.219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying the governing parameters of self-sustained oscillation is crucial for the diagnosis, prediction and control of thermoacoustic instabilities. In this paper, we propose and validate a novel method for computing the parameters of thermoacoustic oscillation in a stochastic environment, which exploits a physics-informed neural network (PINN). Specifically, we introduce a negative log-likelihood loss function that integrates the stochastic samples and the solution of the Fokker–Planck equation. The proposed framework is validated using the numerically generated signal and the experimental data obtained from an annular combustor, both before and after the supercritical Hopf bifurcation. The results of PINN-based system identification show good agreement with the actual system parameters and the original stochastic signal, with improved accuracy compared to established methods. To the best of our knowledge, this study constitutes the first demonstration of the PINN-inverse approach that uses the noise-induced dynamics of thermoacoustic systems, opening up new pathways for diagnosing and predicting the thermoacoustic behaviour of various combustion systems.\",\"PeriodicalId\":505053,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"329 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jfm.2024.219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定自持振荡的控制参数对于热声不稳定性的诊断、预测和控制至关重要。在本文中,我们提出并验证了一种在随机环境中计算热声振荡参数的新方法,该方法利用了物理信息神经网络(PINN)。具体来说,我们引入了一个负对数似然损失函数,该函数综合了随机样本和福克-普朗克方程的解。在超临界霍普夫分岔之前和之后,我们利用数值生成的信号和从环形燃烧器获得的实验数据对所提出的框架进行了验证。基于 PINN 的系统识别结果表明,与实际系统参数和原始随机信号非常吻合,与已有方法相比精度更高。据我们所知,这项研究首次展示了利用热声系统噪声诱导动力学的 PINN 逆方法,为诊断和预测各种燃烧系统的热声行为开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A PINN approach for identifying governing parameters of noisy thermoacoustic systems
Identifying the governing parameters of self-sustained oscillation is crucial for the diagnosis, prediction and control of thermoacoustic instabilities. In this paper, we propose and validate a novel method for computing the parameters of thermoacoustic oscillation in a stochastic environment, which exploits a physics-informed neural network (PINN). Specifically, we introduce a negative log-likelihood loss function that integrates the stochastic samples and the solution of the Fokker–Planck equation. The proposed framework is validated using the numerically generated signal and the experimental data obtained from an annular combustor, both before and after the supercritical Hopf bifurcation. The results of PINN-based system identification show good agreement with the actual system parameters and the original stochastic signal, with improved accuracy compared to established methods. To the best of our knowledge, this study constitutes the first demonstration of the PINN-inverse approach that uses the noise-induced dynamics of thermoacoustic systems, opening up new pathways for diagnosing and predicting the thermoacoustic behaviour of various combustion systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信