用于 LHCb ECAL 升级 II 的闪烁采样 ECAL 技术

E. Picatoste
{"title":"用于 LHCb ECAL 升级 II 的闪烁采样 ECAL 技术","authors":"E. Picatoste","doi":"10.1088/1748-0221/19/04/c04016","DOIUrl":null,"url":null,"abstract":"\n The aim of the LHCb Upgrade II is to be able to operate at a luminosity of 1.5×1034 cm-2 s-1 to collect a data set of 300 fb-1. The required substantial modifications of the current LHCb electromagnetic calorimeter due to high radiation doses in the central region and increased particle densities are referred to as LHCb ECAL Upgrade II. A consolidation of the ECAL already during the long shutdown 3 will reduce the occupancy and mitigate the effects of substantial ageing in the central region after Run 3.\n\nSeveral scintillating sampling ECAL technologies are being investigated in an ongoing R&D campaign: Spaghetti Calorimeter (SpaCal) with garnet scintillating crystals and tungsten absorber, SpaCal with scintillating plastic fibres and tungsten or lead absorber, and Shashlik with polystyrene tiles, lead absorber and fast WLS fibres.\n\nTiming capabilities with tens of picoseconds precision for neutral electromagnetic particles and increased granularity with a denser absorber in the central region are needed for pile-up mitigation. Time resolutions of better than 20 ps at high energy were observed in test beam measurements of prototype SpaCal and Shashlik modules. Energy resolutions with sampling contributions of about 10%/√E, in line with the requirements, were observed.","PeriodicalId":507814,"journal":{"name":"Journal of Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scintillating sampling ECAL technology for the LHCb ECAL Upgrade II\",\"authors\":\"E. Picatoste\",\"doi\":\"10.1088/1748-0221/19/04/c04016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The aim of the LHCb Upgrade II is to be able to operate at a luminosity of 1.5×1034 cm-2 s-1 to collect a data set of 300 fb-1. The required substantial modifications of the current LHCb electromagnetic calorimeter due to high radiation doses in the central region and increased particle densities are referred to as LHCb ECAL Upgrade II. A consolidation of the ECAL already during the long shutdown 3 will reduce the occupancy and mitigate the effects of substantial ageing in the central region after Run 3.\\n\\nSeveral scintillating sampling ECAL technologies are being investigated in an ongoing R&D campaign: Spaghetti Calorimeter (SpaCal) with garnet scintillating crystals and tungsten absorber, SpaCal with scintillating plastic fibres and tungsten or lead absorber, and Shashlik with polystyrene tiles, lead absorber and fast WLS fibres.\\n\\nTiming capabilities with tens of picoseconds precision for neutral electromagnetic particles and increased granularity with a denser absorber in the central region are needed for pile-up mitigation. Time resolutions of better than 20 ps at high energy were observed in test beam measurements of prototype SpaCal and Shashlik modules. Energy resolutions with sampling contributions of about 10%/√E, in line with the requirements, were observed.\",\"PeriodicalId\":507814,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/19/04/c04016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/19/04/c04016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

LHCb 升级 II 的目标是能够在 1.5×1034 cm-2 s-1 的光度下运行,收集 300 fb-1 的数据集。由于中心区域辐射剂量高和粒子密度增加,需要对目前的 LHCb 电磁量热计进行重大改造,这被称为 LHCb ECAL 升级 II。在漫长的第3次关机期间对ECAL进行整合,将减少运行3后中心区的占用并减轻大量老化的影响:目前正在对几种闪烁取样 ECAL 技术进行研究:使用石榴石闪烁晶体和钨吸收体的 Spaghetti Calorimeter (SpaCal)、使用闪烁塑料纤维和钨或铅吸收体的 SpaCal 以及使用聚苯乙烯瓦片、铅吸收体和快速 WLS 纤维的 Shashlik。在原型 SpaCal 和 Shashlik 模块的测试光束测量中,观察到高能量下的时间分辨率优于 20 ps。能量分辨率的采样贡献约为 10%/√E,符合要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scintillating sampling ECAL technology for the LHCb ECAL Upgrade II
The aim of the LHCb Upgrade II is to be able to operate at a luminosity of 1.5×1034 cm-2 s-1 to collect a data set of 300 fb-1. The required substantial modifications of the current LHCb electromagnetic calorimeter due to high radiation doses in the central region and increased particle densities are referred to as LHCb ECAL Upgrade II. A consolidation of the ECAL already during the long shutdown 3 will reduce the occupancy and mitigate the effects of substantial ageing in the central region after Run 3. Several scintillating sampling ECAL technologies are being investigated in an ongoing R&D campaign: Spaghetti Calorimeter (SpaCal) with garnet scintillating crystals and tungsten absorber, SpaCal with scintillating plastic fibres and tungsten or lead absorber, and Shashlik with polystyrene tiles, lead absorber and fast WLS fibres. Timing capabilities with tens of picoseconds precision for neutral electromagnetic particles and increased granularity with a denser absorber in the central region are needed for pile-up mitigation. Time resolutions of better than 20 ps at high energy were observed in test beam measurements of prototype SpaCal and Shashlik modules. Energy resolutions with sampling contributions of about 10%/√E, in line with the requirements, were observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信