{"title":"考奇问题的功能体素建模","authors":"A. Tolok, N. Tolok","doi":"10.26583/sv.16.1.09","DOIUrl":null,"url":null,"abstract":"The paper considers an approach to solving the Cauchy problem for an example of a partial differential equation of the first order under given boundary conditions by the functional voxel method (FVM). The proposed approach uses the accumulated experience of differentiation and integration into FV- modeling to obtain local geometric characteristics of triangular elements on the surface of the resulting function in the process of linear approximation. The analytical solution of a simple example of a partial differential equation of the first order for the Cauchy problem is analyzed. Based on the obtained analytical solution, FV-model is constructed for further comparison with the results obtained by means of FV-modeling. The algorithm for solving the example is described by means of FV-modeling. A visual and numerical comparative analysis is carried out to determine the difference between the obtained results of FV-modeling and the accepted standard. The main difference between solving such a problem by numerical methods is the results obtained. In numerical methods, the result is the value of the function at the approximation nodes, and the FV-model at the nodes contains local geometric characteristics (gradient components in a space enlarged by one), which makes it possible to obtain a nodal local function of an implicit form, as well as a differential local function of an explicit form. The proposed graphical representation of the function area on a computer provides not only visual visibility, but also compact storage compared to a traditional array of real numbers.","PeriodicalId":38328,"journal":{"name":"Scientific Visualization","volume":"311 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional-Voxel Modeling of The Cauchy Problem\",\"authors\":\"A. Tolok, N. Tolok\",\"doi\":\"10.26583/sv.16.1.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers an approach to solving the Cauchy problem for an example of a partial differential equation of the first order under given boundary conditions by the functional voxel method (FVM). The proposed approach uses the accumulated experience of differentiation and integration into FV- modeling to obtain local geometric characteristics of triangular elements on the surface of the resulting function in the process of linear approximation. The analytical solution of a simple example of a partial differential equation of the first order for the Cauchy problem is analyzed. Based on the obtained analytical solution, FV-model is constructed for further comparison with the results obtained by means of FV-modeling. The algorithm for solving the example is described by means of FV-modeling. A visual and numerical comparative analysis is carried out to determine the difference between the obtained results of FV-modeling and the accepted standard. The main difference between solving such a problem by numerical methods is the results obtained. In numerical methods, the result is the value of the function at the approximation nodes, and the FV-model at the nodes contains local geometric characteristics (gradient components in a space enlarged by one), which makes it possible to obtain a nodal local function of an implicit form, as well as a differential local function of an explicit form. The proposed graphical representation of the function area on a computer provides not only visual visibility, but also compact storage compared to a traditional array of real numbers.\",\"PeriodicalId\":38328,\"journal\":{\"name\":\"Scientific Visualization\",\"volume\":\"311 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26583/sv.16.1.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/sv.16.1.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
The paper considers an approach to solving the Cauchy problem for an example of a partial differential equation of the first order under given boundary conditions by the functional voxel method (FVM). The proposed approach uses the accumulated experience of differentiation and integration into FV- modeling to obtain local geometric characteristics of triangular elements on the surface of the resulting function in the process of linear approximation. The analytical solution of a simple example of a partial differential equation of the first order for the Cauchy problem is analyzed. Based on the obtained analytical solution, FV-model is constructed for further comparison with the results obtained by means of FV-modeling. The algorithm for solving the example is described by means of FV-modeling. A visual and numerical comparative analysis is carried out to determine the difference between the obtained results of FV-modeling and the accepted standard. The main difference between solving such a problem by numerical methods is the results obtained. In numerical methods, the result is the value of the function at the approximation nodes, and the FV-model at the nodes contains local geometric characteristics (gradient components in a space enlarged by one), which makes it possible to obtain a nodal local function of an implicit form, as well as a differential local function of an explicit form. The proposed graphical representation of the function area on a computer provides not only visual visibility, but also compact storage compared to a traditional array of real numbers.