三维二值图像上用于简单代表性基本体积确定的多立方体生长算法

Q4 Computer Science
R. I. Kadyrov
{"title":"三维二值图像上用于简单代表性基本体积确定的多立方体生长算法","authors":"R. I. Kadyrov","doi":"10.26583/sv.16.1.11","DOIUrl":null,"url":null,"abstract":"Porosity analysis is fundamental for understanding various material properties and transport phenomena in scientific and engineering disciplines. This study delves into the challenging task of determining the representative elementary volume (REV) in porous media, crucial for accurate analyses. Two novel algorithms, Center-Corner Cubes Growing (3CG) and Random Cubes Growing (RCG), were proposed and tested on synthetic body-centered cubic (BCC) sphere packing and natural porous structures of Berea sandstone and Indiana limestone, obtained using µCT. First algorithm (3CG) operates by analyzing porosity within cubes growing from each of the eight corners and a central region of a 3D binarized stack. In contrast, the Random Cube Growing (RCG) algorithm randomly selects seed points within the 3D stack and grows cubic regions around them. Both algorithms systematically compute porosity for various cube sizes, determining the average porosity and standard deviation for each extent. These visual analytics tools contribute to identifying the specific size ranges where porosity curves converge and stabilize, indicating potential REV within the material. While 3CG simplifies the approach by focusing on a limited number of curves, RCG provides a broader view, capturing diverse porosity patterns. The absence of consistent local minima in certain cases indicates high porosity heterogeneity and the impossibility of achieving REV in certain sample sizes.","PeriodicalId":38328,"journal":{"name":"Scientific Visualization","volume":"1020 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Cubes Growth Algorithms for Simple Representative Elementary Volume Determination on 3D Binary Images\",\"authors\":\"R. I. Kadyrov\",\"doi\":\"10.26583/sv.16.1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Porosity analysis is fundamental for understanding various material properties and transport phenomena in scientific and engineering disciplines. This study delves into the challenging task of determining the representative elementary volume (REV) in porous media, crucial for accurate analyses. Two novel algorithms, Center-Corner Cubes Growing (3CG) and Random Cubes Growing (RCG), were proposed and tested on synthetic body-centered cubic (BCC) sphere packing and natural porous structures of Berea sandstone and Indiana limestone, obtained using µCT. First algorithm (3CG) operates by analyzing porosity within cubes growing from each of the eight corners and a central region of a 3D binarized stack. In contrast, the Random Cube Growing (RCG) algorithm randomly selects seed points within the 3D stack and grows cubic regions around them. Both algorithms systematically compute porosity for various cube sizes, determining the average porosity and standard deviation for each extent. These visual analytics tools contribute to identifying the specific size ranges where porosity curves converge and stabilize, indicating potential REV within the material. While 3CG simplifies the approach by focusing on a limited number of curves, RCG provides a broader view, capturing diverse porosity patterns. The absence of consistent local minima in certain cases indicates high porosity heterogeneity and the impossibility of achieving REV in certain sample sizes.\",\"PeriodicalId\":38328,\"journal\":{\"name\":\"Scientific Visualization\",\"volume\":\"1020 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26583/sv.16.1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/sv.16.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

多孔性分析是了解科学和工程学科中各种材料特性和传输现象的基础。本研究深入探讨了确定多孔介质中代表性基本体积(REV)这一具有挑战性的任务,这对精确分析至关重要。研究提出了两种新算法,即中心角立方体生长算法(3CG)和随机立方体生长算法(RCG),并在合成体心立方体(BCC)球填料和使用 µCT 获得的贝里亚砂岩和印第安纳石灰石的天然多孔结构上进行了测试。第一种算法(3CG)通过分析从三维二值化堆栈的八个角和一个中心区域生长出来的立方体内的孔隙率来运行。而随机立方体生长(RCG)算法则是在三维堆栈中随机选择种子点,并在其周围生长立方体区域。这两种算法都能系统地计算各种立方体大小的孔隙度,确定每个范围的平均孔隙度和标准偏差。这些可视化分析工具有助于确定孔隙率曲线收敛和稳定的特定尺寸范围,从而显示材料内部潜在的 REV。3CG 专注于数量有限的曲线,从而简化了方法,而 RCG 则提供了更广阔的视野,捕捉到多种多样的孔隙度模式。在某些情况下,没有一致的局部最小值表明孔隙率异质性很高,在某些样本大小的情况下不可能实现 REV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple Cubes Growth Algorithms for Simple Representative Elementary Volume Determination on 3D Binary Images
Porosity analysis is fundamental for understanding various material properties and transport phenomena in scientific and engineering disciplines. This study delves into the challenging task of determining the representative elementary volume (REV) in porous media, crucial for accurate analyses. Two novel algorithms, Center-Corner Cubes Growing (3CG) and Random Cubes Growing (RCG), were proposed and tested on synthetic body-centered cubic (BCC) sphere packing and natural porous structures of Berea sandstone and Indiana limestone, obtained using µCT. First algorithm (3CG) operates by analyzing porosity within cubes growing from each of the eight corners and a central region of a 3D binarized stack. In contrast, the Random Cube Growing (RCG) algorithm randomly selects seed points within the 3D stack and grows cubic regions around them. Both algorithms systematically compute porosity for various cube sizes, determining the average porosity and standard deviation for each extent. These visual analytics tools contribute to identifying the specific size ranges where porosity curves converge and stabilize, indicating potential REV within the material. While 3CG simplifies the approach by focusing on a limited number of curves, RCG provides a broader view, capturing diverse porosity patterns. The absence of consistent local minima in certain cases indicates high porosity heterogeneity and the impossibility of achieving REV in certain sample sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Visualization
Scientific Visualization Computer Science-Computer Vision and Pattern Recognition
CiteScore
1.30
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信