{"title":"通过即插即用交替方向乘法优化视频去噪的动态模式分解","authors":"Hyoga Yamamoto, Shunki Anami, Ryo Matsuoka","doi":"10.3390/signals5020011","DOIUrl":null,"url":null,"abstract":"Dynamic mode decomposition (DMD) is a powerful tool for separating the background and foreground in videos. This algorithm decomposes a video into dynamic modes, called DMD modes, to facilitate the extraction of the near-zero mode, which represents the stationary background. Simultaneously, it captures the evolving motion in the remaining modes, which correspond to the moving foreground components. However, when applied to noisy video, this separation leads to degradation of the background and foreground components, primarily due to the noise-induced degradation of the DMD mode. This paper introduces a novel noise removal method for the DMD mode in noisy videos. Specifically, we formulate a minimization problem that reduces the noise in the DMD mode and the reconstructed video. The proposed problem is solved using an algorithm based on the plug-and-play alternating direction method of multipliers (PnP-ADMM). We applied the proposed method to several video datasets with different levels of artificially added Gaussian noise in the experiment. Our method consistently yielded superior results in quantitative evaluations using peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) compared to naive noise removal methods. In addition, qualitative comparisons confirmed that our method can restore higher-quality videos than the naive methods.","PeriodicalId":93815,"journal":{"name":"Signals","volume":"956 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Dynamic Mode Decomposition for Video Denoising via Plug-and-Play Alternating Direction Method of Multipliers\",\"authors\":\"Hyoga Yamamoto, Shunki Anami, Ryo Matsuoka\",\"doi\":\"10.3390/signals5020011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic mode decomposition (DMD) is a powerful tool for separating the background and foreground in videos. This algorithm decomposes a video into dynamic modes, called DMD modes, to facilitate the extraction of the near-zero mode, which represents the stationary background. Simultaneously, it captures the evolving motion in the remaining modes, which correspond to the moving foreground components. However, when applied to noisy video, this separation leads to degradation of the background and foreground components, primarily due to the noise-induced degradation of the DMD mode. This paper introduces a novel noise removal method for the DMD mode in noisy videos. Specifically, we formulate a minimization problem that reduces the noise in the DMD mode and the reconstructed video. The proposed problem is solved using an algorithm based on the plug-and-play alternating direction method of multipliers (PnP-ADMM). We applied the proposed method to several video datasets with different levels of artificially added Gaussian noise in the experiment. Our method consistently yielded superior results in quantitative evaluations using peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) compared to naive noise removal methods. In addition, qualitative comparisons confirmed that our method can restore higher-quality videos than the naive methods.\",\"PeriodicalId\":93815,\"journal\":{\"name\":\"Signals\",\"volume\":\"956 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/signals5020011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals5020011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing Dynamic Mode Decomposition for Video Denoising via Plug-and-Play Alternating Direction Method of Multipliers
Dynamic mode decomposition (DMD) is a powerful tool for separating the background and foreground in videos. This algorithm decomposes a video into dynamic modes, called DMD modes, to facilitate the extraction of the near-zero mode, which represents the stationary background. Simultaneously, it captures the evolving motion in the remaining modes, which correspond to the moving foreground components. However, when applied to noisy video, this separation leads to degradation of the background and foreground components, primarily due to the noise-induced degradation of the DMD mode. This paper introduces a novel noise removal method for the DMD mode in noisy videos. Specifically, we formulate a minimization problem that reduces the noise in the DMD mode and the reconstructed video. The proposed problem is solved using an algorithm based on the plug-and-play alternating direction method of multipliers (PnP-ADMM). We applied the proposed method to several video datasets with different levels of artificially added Gaussian noise in the experiment. Our method consistently yielded superior results in quantitative evaluations using peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) compared to naive noise removal methods. In addition, qualitative comparisons confirmed that our method can restore higher-quality videos than the naive methods.