在代用模型不确定的情况下优化二氧化碳捕集厂

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
A. Pedrozo , C.M. Valderrama-Ríos , M.A. Zamarripa , J. Morgan , J.P. Osorio-Suárez , A. Uribe-Rodríguez , M.S. Diaz , L.T. Biegler
{"title":"在代用模型不确定的情况下优化二氧化碳捕集厂","authors":"A. Pedrozo ,&nbsp;C.M. Valderrama-Ríos ,&nbsp;M.A. Zamarripa ,&nbsp;J. Morgan ,&nbsp;J.P. Osorio-Suárez ,&nbsp;A. Uribe-Rodríguez ,&nbsp;M.S. Diaz ,&nbsp;L.T. Biegler","doi":"10.1016/j.compchemeng.2024.108709","DOIUrl":null,"url":null,"abstract":"<div><p>CO<sub>2</sub> capture plants can help reduce the cost of deploying capture systems across the globe. However, the CO<sub>2</sub> variability and model uncertainty represent operational challenges to capture CO<sub>2</sub> from different sources. This work proposes a framework for analyzing the optimal plant design considering different flue gas sources. We show a methodology to generate large data sets from optimization runs using rigorous models in Aspen Plus®. The efficiency of the approach allows its application to large-scale optimization problems, with an average CPU time per run of 176 s.</p><p>We additionally build surrogate models (SMs) for the capital and operating costs of the capture plants, employing an iterative procedure to generate SMs using ALAMO. We systematically reject SMs with high uncertainty in the estimated parameters. This approach results in SMs with favorable bias-variance tradeoffs, enabling their effective application to optimization problems under uncertainty, as demonstrated with a pooling problem of CO<sub>2</sub> streams.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of CO2 capture plants with surrogate model uncertainties\",\"authors\":\"A. Pedrozo ,&nbsp;C.M. Valderrama-Ríos ,&nbsp;M.A. Zamarripa ,&nbsp;J. Morgan ,&nbsp;J.P. Osorio-Suárez ,&nbsp;A. Uribe-Rodríguez ,&nbsp;M.S. Diaz ,&nbsp;L.T. Biegler\",\"doi\":\"10.1016/j.compchemeng.2024.108709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>CO<sub>2</sub> capture plants can help reduce the cost of deploying capture systems across the globe. However, the CO<sub>2</sub> variability and model uncertainty represent operational challenges to capture CO<sub>2</sub> from different sources. This work proposes a framework for analyzing the optimal plant design considering different flue gas sources. We show a methodology to generate large data sets from optimization runs using rigorous models in Aspen Plus®. The efficiency of the approach allows its application to large-scale optimization problems, with an average CPU time per run of 176 s.</p><p>We additionally build surrogate models (SMs) for the capital and operating costs of the capture plants, employing an iterative procedure to generate SMs using ALAMO. We systematically reject SMs with high uncertainty in the estimated parameters. This approach results in SMs with favorable bias-variance tradeoffs, enabling their effective application to optimization problems under uncertainty, as demonstrated with a pooling problem of CO<sub>2</sub> streams.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424001273\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424001273","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳捕集厂有助于降低在全球部署捕集系统的成本。然而,二氧化碳的可变性和模型的不确定性给从不同来源捕集二氧化碳带来了操作上的挑战。这项工作提出了一个框架,用于分析考虑不同烟气源的最佳工厂设计。我们展示了一种使用 Aspen Plus® 中的严格模型从优化运行中生成大型数据集的方法。该方法的高效性使其能够应用于大规模优化问题,每次运行的平均 CPU 时间为 176 秒。我们还为捕集工厂的资本和运营成本建立了替代模型(SMs),采用迭代程序使用 ALAMO 生成 SMs。我们系统地剔除了估计参数不确定性较高的 SMs。这种方法产生的代用模型具有良好的偏差-方差权衡,可有效应用于不确定性条件下的优化问题,二氧化碳流的汇集问题就是证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of CO2 capture plants with surrogate model uncertainties

CO2 capture plants can help reduce the cost of deploying capture systems across the globe. However, the CO2 variability and model uncertainty represent operational challenges to capture CO2 from different sources. This work proposes a framework for analyzing the optimal plant design considering different flue gas sources. We show a methodology to generate large data sets from optimization runs using rigorous models in Aspen Plus®. The efficiency of the approach allows its application to large-scale optimization problems, with an average CPU time per run of 176 s.

We additionally build surrogate models (SMs) for the capital and operating costs of the capture plants, employing an iterative procedure to generate SMs using ALAMO. We systematically reject SMs with high uncertainty in the estimated parameters. This approach results in SMs with favorable bias-variance tradeoffs, enabling their effective application to optimization problems under uncertainty, as demonstrated with a pooling problem of CO2 streams.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信