Nicolas Ruffini, Saleh Altahini, Stephan Weißbach, Nico Weber, Jonas Milkovits, Anna Wierczeiko, Hendrik Backhaus, Albrecht Stroh
{"title":"ViNe-Seg:嵌入图形用户界面的深度学习辅助可见神经元分割及后续分析功能","authors":"Nicolas Ruffini, Saleh Altahini, Stephan Weißbach, Nico Weber, Jonas Milkovits, Anna Wierczeiko, Hendrik Backhaus, Albrecht Stroh","doi":"10.1093/bioinformatics/btae177","DOIUrl":null,"url":null,"abstract":"Abstract Summary Segmentation of neural somata is a crucial and usually the most time-consuming step in the analysis of optical functional imaging of neuronal microcircuits. In recent years, multiple auto-segmentation tools have been developed to improve the speed and consistency of the segmentation process, mostly, using deep learning approaches. Current segmentation tools, while advanced, still encounter challenges in producing accurate segmentation results, especially in datasets with a low signal-to-noise ratio. This has led to a reliance on manual segmentation techniques. However, manual methods, while customized to specific laboratory protocols, can introduce variability due to individual differences in interpretation, potentially affecting dataset consistency across studies. In response to this challenge, we present ViNe-Seg: a deep-learning-based semi-automatic segmentation tool that offers (i) detection of visible neurons, irrespective of their activity status; (ii) the ability to perform segmentation during an ongoing experiment; (iii) a user-friendly graphical interface that facilitates expert supervision, ensuring precise identification of Regions of Interest; (iv) an array of segmentation models with the option of training custom models and sharing them with the community; and (v) seamless integration of subsequent analysis steps. Availability and implementation ViNe-Seg code and documentation are publicly available at https://github.com/NiRuff/ViNe-Seg and can be installed from https://pypi.org/project/ViNeSeg/.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ViNe-Seg: deep-learning-assisted segmentation of visible neurons and subsequent analysis embedded in a graphical user interface\",\"authors\":\"Nicolas Ruffini, Saleh Altahini, Stephan Weißbach, Nico Weber, Jonas Milkovits, Anna Wierczeiko, Hendrik Backhaus, Albrecht Stroh\",\"doi\":\"10.1093/bioinformatics/btae177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Summary Segmentation of neural somata is a crucial and usually the most time-consuming step in the analysis of optical functional imaging of neuronal microcircuits. In recent years, multiple auto-segmentation tools have been developed to improve the speed and consistency of the segmentation process, mostly, using deep learning approaches. Current segmentation tools, while advanced, still encounter challenges in producing accurate segmentation results, especially in datasets with a low signal-to-noise ratio. This has led to a reliance on manual segmentation techniques. However, manual methods, while customized to specific laboratory protocols, can introduce variability due to individual differences in interpretation, potentially affecting dataset consistency across studies. In response to this challenge, we present ViNe-Seg: a deep-learning-based semi-automatic segmentation tool that offers (i) detection of visible neurons, irrespective of their activity status; (ii) the ability to perform segmentation during an ongoing experiment; (iii) a user-friendly graphical interface that facilitates expert supervision, ensuring precise identification of Regions of Interest; (iv) an array of segmentation models with the option of training custom models and sharing them with the community; and (v) seamless integration of subsequent analysis steps. Availability and implementation ViNe-Seg code and documentation are publicly available at https://github.com/NiRuff/ViNe-Seg and can be installed from https://pypi.org/project/ViNeSeg/.\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae177\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae177","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
ViNe-Seg: deep-learning-assisted segmentation of visible neurons and subsequent analysis embedded in a graphical user interface
Abstract Summary Segmentation of neural somata is a crucial and usually the most time-consuming step in the analysis of optical functional imaging of neuronal microcircuits. In recent years, multiple auto-segmentation tools have been developed to improve the speed and consistency of the segmentation process, mostly, using deep learning approaches. Current segmentation tools, while advanced, still encounter challenges in producing accurate segmentation results, especially in datasets with a low signal-to-noise ratio. This has led to a reliance on manual segmentation techniques. However, manual methods, while customized to specific laboratory protocols, can introduce variability due to individual differences in interpretation, potentially affecting dataset consistency across studies. In response to this challenge, we present ViNe-Seg: a deep-learning-based semi-automatic segmentation tool that offers (i) detection of visible neurons, irrespective of their activity status; (ii) the ability to perform segmentation during an ongoing experiment; (iii) a user-friendly graphical interface that facilitates expert supervision, ensuring precise identification of Regions of Interest; (iv) an array of segmentation models with the option of training custom models and sharing them with the community; and (v) seamless integration of subsequent analysis steps. Availability and implementation ViNe-Seg code and documentation are publicly available at https://github.com/NiRuff/ViNe-Seg and can be installed from https://pypi.org/project/ViNeSeg/.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.