6 英寸海上法兰连接器密封结构优化设计研究

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE
Brodogradnja Pub Date : 2024-04-01 DOI:10.21278/brod75207
Jianguo Qin, Minghui Ji, Haixia Gong, Sijia Guo, Yanfeng Zhang, Yejiang Li, Haitang Cen
{"title":"6 英寸海上法兰连接器密封结构优化设计研究","authors":"Jianguo Qin, Minghui Ji, Haixia Gong, Sijia Guo, Yanfeng Zhang, Yejiang Li, Haitang Cen","doi":"10.21278/brod75207","DOIUrl":null,"url":null,"abstract":"Taking the maximum contact pressure as the objective function for, the optimal design model of the offshore flange connector was established to analyze the impact of the flange cone's angle and the curvature radius of the lenticular gasket's contact surface on the sealing performance of the connector. An optimized three-dimensional model of the offshore flange connector was constructed using the MATLAB software's fmincon function to obtain the optimal size of the cone angle and curvature radius. The maximum contact pressure and maximum equivalent stress values of the non-optimized and optimized offshore flange connectors under the cross combination of two design pressures and six operating temperatures were analyzed by Workbench software, and the sealing performance of the non-optimized and optimized offshore flange connectors was compared according to the sealing judgment basis. The results show that compared with the previously studied offshore flange connector, the sealing structure of optimized offshore flange exhibits maximum increase in contact pressure increase but maximum decrease in equivalent stress. Under actual operating circumstances, the optimized offshore flange connection performs better in sealing and is less prone to breakage.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on optimal design of 6in offshore flange connector’s sealing structure\",\"authors\":\"Jianguo Qin, Minghui Ji, Haixia Gong, Sijia Guo, Yanfeng Zhang, Yejiang Li, Haitang Cen\",\"doi\":\"10.21278/brod75207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taking the maximum contact pressure as the objective function for, the optimal design model of the offshore flange connector was established to analyze the impact of the flange cone's angle and the curvature radius of the lenticular gasket's contact surface on the sealing performance of the connector. An optimized three-dimensional model of the offshore flange connector was constructed using the MATLAB software's fmincon function to obtain the optimal size of the cone angle and curvature radius. The maximum contact pressure and maximum equivalent stress values of the non-optimized and optimized offshore flange connectors under the cross combination of two design pressures and six operating temperatures were analyzed by Workbench software, and the sealing performance of the non-optimized and optimized offshore flange connectors was compared according to the sealing judgment basis. The results show that compared with the previously studied offshore flange connector, the sealing structure of optimized offshore flange exhibits maximum increase in contact pressure increase but maximum decrease in equivalent stress. Under actual operating circumstances, the optimized offshore flange connection performs better in sealing and is less prone to breakage.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod75207\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod75207","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

以最大接触压力为目标函数,建立了海上法兰连接器的优化设计模型,分析了法兰锥角和透镜垫片接触面曲率半径对连接器密封性能的影响。利用 MATLAB 软件的 fmincon 函数构建了海上法兰连接器的优化三维模型,以获得锥角和曲率半径的最佳尺寸。利用 Workbench 软件分析了未优化和优化的海上法兰连接器在两种设计压力和六种工作温度交叉组合下的最大接触压力和最大等效应力值,并根据密封判断依据比较了未优化和优化的海上法兰连接器的密封性能。结果表明,与之前研究的海洋工程法兰连接器相比,优化海洋工程法兰的密封结构在接触压力增加方面表现出最大增幅,但在等效应力方面表现出最大降幅。在实际操作环境下,优化后的海上法兰连接密封性能更好,不易断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on optimal design of 6in offshore flange connector’s sealing structure
Taking the maximum contact pressure as the objective function for, the optimal design model of the offshore flange connector was established to analyze the impact of the flange cone's angle and the curvature radius of the lenticular gasket's contact surface on the sealing performance of the connector. An optimized three-dimensional model of the offshore flange connector was constructed using the MATLAB software's fmincon function to obtain the optimal size of the cone angle and curvature radius. The maximum contact pressure and maximum equivalent stress values of the non-optimized and optimized offshore flange connectors under the cross combination of two design pressures and six operating temperatures were analyzed by Workbench software, and the sealing performance of the non-optimized and optimized offshore flange connectors was compared according to the sealing judgment basis. The results show that compared with the previously studied offshore flange connector, the sealing structure of optimized offshore flange exhibits maximum increase in contact pressure increase but maximum decrease in equivalent stress. Under actual operating circumstances, the optimized offshore flange connection performs better in sealing and is less prone to breakage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信