电场特征模糊聚类及其在雷暴可解释性中的应用

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS
Xu Yang , Hongyan Xing , Xinyuan Ji , Wei Xu , Witold Pedrycz
{"title":"电场特征模糊聚类及其在雷暴可解释性中的应用","authors":"Xu Yang ,&nbsp;Hongyan Xing ,&nbsp;Xinyuan Ji ,&nbsp;Wei Xu ,&nbsp;Witold Pedrycz","doi":"10.1016/j.dcan.2024.03.010","DOIUrl":null,"url":null,"abstract":"<div><div>Changes in the Atmospheric Electric Field Signal (AEFS) are highly correlated with weather changes, especially with thunderstorm activities. However, little attention has been paid to the ambiguous weather information implicit in AEFS changes. In this paper, a Fuzzy <em>C</em>-Means (FCM) clustering method is used for the first time to develop an innovative approach to characterize the weather attributes carried by AEFS. First, a time series dataset is created in the time domain using AEFS attributes. The AEFS-based weather is evaluated according to the time-series Membership Degree (MD) changes obtained by inputting this dataset into the FCM. Second, thunderstorm intensities are reflected by the change in distance from a thunderstorm cloud point charge to an AEF apparatus. Thus, a matching relationship is established between the normalized distance and the thunderstorm dominant MD in the space domain. Finally, the rationality and reliability of the proposed method are verified by combining radar charts and expert experience. The results confirm that this method accurately characterizes the weather attributes and changes in the AEFS, and a negative distance-MD correlation is obtained for the first time. The detection of thunderstorm activity by AEF from the perspective of fuzzy set technology provides a meaningful guidance for interpretable thunderstorms.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 2","pages":"Pages 299-307"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy clustering for electric field characterization and its application to thunderstorm interpretability\",\"authors\":\"Xu Yang ,&nbsp;Hongyan Xing ,&nbsp;Xinyuan Ji ,&nbsp;Wei Xu ,&nbsp;Witold Pedrycz\",\"doi\":\"10.1016/j.dcan.2024.03.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Changes in the Atmospheric Electric Field Signal (AEFS) are highly correlated with weather changes, especially with thunderstorm activities. However, little attention has been paid to the ambiguous weather information implicit in AEFS changes. In this paper, a Fuzzy <em>C</em>-Means (FCM) clustering method is used for the first time to develop an innovative approach to characterize the weather attributes carried by AEFS. First, a time series dataset is created in the time domain using AEFS attributes. The AEFS-based weather is evaluated according to the time-series Membership Degree (MD) changes obtained by inputting this dataset into the FCM. Second, thunderstorm intensities are reflected by the change in distance from a thunderstorm cloud point charge to an AEF apparatus. Thus, a matching relationship is established between the normalized distance and the thunderstorm dominant MD in the space domain. Finally, the rationality and reliability of the proposed method are verified by combining radar charts and expert experience. The results confirm that this method accurately characterizes the weather attributes and changes in the AEFS, and a negative distance-MD correlation is obtained for the first time. The detection of thunderstorm activity by AEF from the perspective of fuzzy set technology provides a meaningful guidance for interpretable thunderstorms.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 2\",\"pages\":\"Pages 299-307\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864824000403\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824000403","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

大气电场信号的变化与天气变化密切相关,特别是与雷暴活动密切相关。然而,很少有人注意到AEFS变化中隐含的模糊天气信息。本文首次采用模糊c均值(FCM)聚类方法,提出了一种表征AEFS天气属性的创新方法。首先,使用AEFS属性在时间域中创建时间序列数据集。将该数据集输入FCM,根据时间序列隶属度(MD)变化对基于aefs的天气进行评估。其次,雷暴强度通过雷暴云点电荷到AEF仪器的距离变化来反映。从而在空间域建立归一化距离与雷暴占优MD的匹配关系。最后,结合雷达图和专家经验验证了所提方法的合理性和可靠性。结果表明,该方法能较准确地表征AEFS的天气属性和变化,并首次获得了负距离- md相关。基于模糊集技术的AEF雷暴活动探测对可解释雷暴具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy clustering for electric field characterization and its application to thunderstorm interpretability
Changes in the Atmospheric Electric Field Signal (AEFS) are highly correlated with weather changes, especially with thunderstorm activities. However, little attention has been paid to the ambiguous weather information implicit in AEFS changes. In this paper, a Fuzzy C-Means (FCM) clustering method is used for the first time to develop an innovative approach to characterize the weather attributes carried by AEFS. First, a time series dataset is created in the time domain using AEFS attributes. The AEFS-based weather is evaluated according to the time-series Membership Degree (MD) changes obtained by inputting this dataset into the FCM. Second, thunderstorm intensities are reflected by the change in distance from a thunderstorm cloud point charge to an AEF apparatus. Thus, a matching relationship is established between the normalized distance and the thunderstorm dominant MD in the space domain. Finally, the rationality and reliability of the proposed method are verified by combining radar charts and expert experience. The results confirm that this method accurately characterizes the weather attributes and changes in the AEFS, and a negative distance-MD correlation is obtained for the first time. The detection of thunderstorm activity by AEF from the perspective of fuzzy set technology provides a meaningful guidance for interpretable thunderstorms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信