利用卫星数据改进东加勒比地区社会援助的针对性

Sophia Chen
{"title":"利用卫星数据改进东加勒比地区社会援助的针对性","authors":"Sophia Chen","doi":"10.5089/9798400274312.001","DOIUrl":null,"url":null,"abstract":": Prioritizing populations most in need of social assistance is an important policy decision. In the Eastern Caribbean, social assistance targeting is constrained by limited data and the need for rapid support in times of large economic and natural disaster shocks. We leverage recent advances in machine learning and satellite imagery processing to propose an implementable strategy in the face of these constraints. We show that local well-being can be predicted with high accuracy in the Eastern Caribbean region using satellite data and that such predictions can be used to improve targeting by reducing aggregation bias, better allocating resources across areas, and proxying for information difficult to verify.","PeriodicalId":504981,"journal":{"name":"IMF Working Papers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Satellite Data to Improve Social Assistance Targeting in the Eastern Caribbean\",\"authors\":\"Sophia Chen\",\"doi\":\"10.5089/9798400274312.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Prioritizing populations most in need of social assistance is an important policy decision. In the Eastern Caribbean, social assistance targeting is constrained by limited data and the need for rapid support in times of large economic and natural disaster shocks. We leverage recent advances in machine learning and satellite imagery processing to propose an implementable strategy in the face of these constraints. We show that local well-being can be predicted with high accuracy in the Eastern Caribbean region using satellite data and that such predictions can be used to improve targeting by reducing aggregation bias, better allocating resources across areas, and proxying for information difficult to verify.\",\"PeriodicalId\":504981,\"journal\":{\"name\":\"IMF Working Papers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMF Working Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5089/9798400274312.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMF Working Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5089/9798400274312.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

:优先考虑最需要社会援助的人群是一项重要的政策决定。在东加勒比海地区,由于数据有限,而且需要在发生大规模经济和自然灾害冲击时迅速提供支持,因此社会援助的目标选择受到了限制。面对这些制约因素,我们利用机器学习和卫星图像处理领域的最新进展,提出了一种可实施的策略。我们的研究表明,在东加勒比海地区,利用卫星数据可以高精度地预测当地的福利状况,而且这种预测可以通过减少汇总偏差、更好地跨地区分配资源以及替代难以核实的信息来改进目标选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing Satellite Data to Improve Social Assistance Targeting in the Eastern Caribbean
: Prioritizing populations most in need of social assistance is an important policy decision. In the Eastern Caribbean, social assistance targeting is constrained by limited data and the need for rapid support in times of large economic and natural disaster shocks. We leverage recent advances in machine learning and satellite imagery processing to propose an implementable strategy in the face of these constraints. We show that local well-being can be predicted with high accuracy in the Eastern Caribbean region using satellite data and that such predictions can be used to improve targeting by reducing aggregation bias, better allocating resources across areas, and proxying for information difficult to verify.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信