基本特征、机器学习和股价暴跌风险

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Fuwei Jiang , Tian Ma , Feifei Zhu
{"title":"基本特征、机器学习和股价暴跌风险","authors":"Fuwei Jiang ,&nbsp;Tian Ma ,&nbsp;Feifei Zhu","doi":"10.1016/j.finmar.2024.100908","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the application of machine learning algorithms for predicting stock price crash risks by employing a set of firm-specific characteristics of the Chinese stock market. The results suggest that machine learning techniques are superior in capturing the nuances of stock price crash risk, particularly through profitability and value versus growth features. These techniques perform well within state-owned enterprises and during periods of low economic policy uncertainty, and predictive insights primarily originate from intra-industry dynamics. In addition, we offer corporate finance- and financial market-based interpretations of machine learning's predictability, as well as a comprehensive understanding of its key determinants.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"69 ","pages":"Article 100908"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental characteristics, machine learning, and stock price crash risk\",\"authors\":\"Fuwei Jiang ,&nbsp;Tian Ma ,&nbsp;Feifei Zhu\",\"doi\":\"10.1016/j.finmar.2024.100908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the application of machine learning algorithms for predicting stock price crash risks by employing a set of firm-specific characteristics of the Chinese stock market. The results suggest that machine learning techniques are superior in capturing the nuances of stock price crash risk, particularly through profitability and value versus growth features. These techniques perform well within state-owned enterprises and during periods of low economic policy uncertainty, and predictive insights primarily originate from intra-industry dynamics. In addition, we offer corporate finance- and financial market-based interpretations of machine learning's predictability, as well as a comprehensive understanding of its key determinants.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"69 \",\"pages\":\"Article 100908\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386418124000260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386418124000260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了机器学习算法在预测股价暴跌风险中的应用,采用了一组中国股市的特定公司特征。结果表明,机器学习技术在捕捉股价暴跌风险的细微差别方面具有优势,特别是通过盈利能力和价值与增长特征。这些技术在国有企业内部和经济政策不确定性较低的时期表现良好,预测性见解主要来自行业内部动态。此外,我们还对机器学习的可预测性提供了基于公司财务和金融市场的解释,以及对其关键决定因素的全面理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fundamental characteristics, machine learning, and stock price crash risk

We investigate the application of machine learning algorithms for predicting stock price crash risks by employing a set of firm-specific characteristics of the Chinese stock market. The results suggest that machine learning techniques are superior in capturing the nuances of stock price crash risk, particularly through profitability and value versus growth features. These techniques perform well within state-owned enterprises and during periods of low economic policy uncertainty, and predictive insights primarily originate from intra-industry dynamics. In addition, we offer corporate finance- and financial market-based interpretations of machine learning's predictability, as well as a comprehensive understanding of its key determinants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信