{"title":"基本特征、机器学习和股价暴跌风险","authors":"Fuwei Jiang , Tian Ma , Feifei Zhu","doi":"10.1016/j.finmar.2024.100908","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the application of machine learning algorithms for predicting stock price crash risks by employing a set of firm-specific characteristics of the Chinese stock market. The results suggest that machine learning techniques are superior in capturing the nuances of stock price crash risk, particularly through profitability and value versus growth features. These techniques perform well within state-owned enterprises and during periods of low economic policy uncertainty, and predictive insights primarily originate from intra-industry dynamics. In addition, we offer corporate finance- and financial market-based interpretations of machine learning's predictability, as well as a comprehensive understanding of its key determinants.</p></div>","PeriodicalId":47899,"journal":{"name":"Journal of Financial Markets","volume":"69 ","pages":"Article 100908"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental characteristics, machine learning, and stock price crash risk\",\"authors\":\"Fuwei Jiang , Tian Ma , Feifei Zhu\",\"doi\":\"10.1016/j.finmar.2024.100908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the application of machine learning algorithms for predicting stock price crash risks by employing a set of firm-specific characteristics of the Chinese stock market. The results suggest that machine learning techniques are superior in capturing the nuances of stock price crash risk, particularly through profitability and value versus growth features. These techniques perform well within state-owned enterprises and during periods of low economic policy uncertainty, and predictive insights primarily originate from intra-industry dynamics. In addition, we offer corporate finance- and financial market-based interpretations of machine learning's predictability, as well as a comprehensive understanding of its key determinants.</p></div>\",\"PeriodicalId\":47899,\"journal\":{\"name\":\"Journal of Financial Markets\",\"volume\":\"69 \",\"pages\":\"Article 100908\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Financial Markets\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386418124000260\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Markets","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386418124000260","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Fundamental characteristics, machine learning, and stock price crash risk
We investigate the application of machine learning algorithms for predicting stock price crash risks by employing a set of firm-specific characteristics of the Chinese stock market. The results suggest that machine learning techniques are superior in capturing the nuances of stock price crash risk, particularly through profitability and value versus growth features. These techniques perform well within state-owned enterprises and during periods of low economic policy uncertainty, and predictive insights primarily originate from intra-industry dynamics. In addition, we offer corporate finance- and financial market-based interpretations of machine learning's predictability, as well as a comprehensive understanding of its key determinants.
期刊介绍:
The Journal of Financial Markets publishes high quality original research on applied and theoretical issues related to securities trading and pricing. Area of coverage includes the analysis and design of trading mechanisms, optimal order placement strategies, the role of information in securities markets, financial intermediation as it relates to securities investments - for example, the structure of brokerage and mutual fund industries, and analyses of short and long run horizon price behaviour. The journal strives to maintain a balance between theoretical and empirical work, and aims to provide prompt and constructive reviews to paper submitters.