基于磁共振的治疗规划评估和分段内漂移校正实验验证

IF 3.4 Q2 ONCOLOGY
Madelon van den Dobbelsteen, Sara L. Hackett, Bram van Asselen, Stijn Oolbekkink, Bas W. Raaymakers, Johannes C.J. de Boer
{"title":"基于磁共振的治疗规划评估和分段内漂移校正实验验证","authors":"Madelon van den Dobbelsteen,&nbsp;Sara L. Hackett,&nbsp;Bram van Asselen,&nbsp;Stijn Oolbekkink,&nbsp;Bas W. Raaymakers,&nbsp;Johannes C.J. de Boer","doi":"10.1016/j.phro.2024.100580","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><p>MRI-guided online adaptive treatments can account for interfractional variations, however intrafraction motion reduces treatment accuracy. Intrafraction plan adaptation methods, such as the Intrafraction Drift Correction (IDC) or sub-fractionation, are needed. IDC uses real-time automatic monitoring of the tumor position to initiate plan adaptations by repositioning segments. IDC is a fast adaptation method that occurs only when necessary and this method could enable margin reduction. This research provides a treatment planning evaluation and experimental validation of the IDC.</p></div><div><h3>Materials and methods</h3><p>An in silico treatment planning evaluation was performed for 13 prostate patients mid-treatment without and with intrafraction plan adaptation (IDC and sub-fractionation). The adaptation methods were evaluated using dose volume histogram (DVH) metrics. To experimentally verify IDC a treatment was mimicked whereby a motion phantom containing an EBT3 film moved mid-treatment, followed by repositioning of segments. In addition, the delivered treatment was irradiated on a diode array phantom for plan quality assurance purposes.</p></div><div><h3>Results</h3><p>The planning study showed benefits for using intrafraction adaptation methods relative to no adaptation, where the IDC and sub-fractionation showed consistently improved target coverage with median target coverages of 100.0%. The experimental results verified the IDC with high minimum gamma passing rates of 99.1% and small mean dose deviations of maximum 0.3%.</p></div><div><h3>Conclusion</h3><p>The straightforward and fast IDC technique showed DVH metrics consistent with the sub-fractionation method using segment weight re-optimization for prostate patients. The dosimetric and geometric accuracy was shown for a full IDC workflow using film and diode array dosimetry.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624000502/pdfft?md5=c8011bab47fdb66631d638a672a9c9a5&pid=1-s2.0-S2405631624000502-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Treatment planning evaluation and experimental validation of the magnetic resonance-based intrafraction drift correction\",\"authors\":\"Madelon van den Dobbelsteen,&nbsp;Sara L. Hackett,&nbsp;Bram van Asselen,&nbsp;Stijn Oolbekkink,&nbsp;Bas W. Raaymakers,&nbsp;Johannes C.J. de Boer\",\"doi\":\"10.1016/j.phro.2024.100580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><p>MRI-guided online adaptive treatments can account for interfractional variations, however intrafraction motion reduces treatment accuracy. Intrafraction plan adaptation methods, such as the Intrafraction Drift Correction (IDC) or sub-fractionation, are needed. IDC uses real-time automatic monitoring of the tumor position to initiate plan adaptations by repositioning segments. IDC is a fast adaptation method that occurs only when necessary and this method could enable margin reduction. This research provides a treatment planning evaluation and experimental validation of the IDC.</p></div><div><h3>Materials and methods</h3><p>An in silico treatment planning evaluation was performed for 13 prostate patients mid-treatment without and with intrafraction plan adaptation (IDC and sub-fractionation). The adaptation methods were evaluated using dose volume histogram (DVH) metrics. To experimentally verify IDC a treatment was mimicked whereby a motion phantom containing an EBT3 film moved mid-treatment, followed by repositioning of segments. In addition, the delivered treatment was irradiated on a diode array phantom for plan quality assurance purposes.</p></div><div><h3>Results</h3><p>The planning study showed benefits for using intrafraction adaptation methods relative to no adaptation, where the IDC and sub-fractionation showed consistently improved target coverage with median target coverages of 100.0%. The experimental results verified the IDC with high minimum gamma passing rates of 99.1% and small mean dose deviations of maximum 0.3%.</p></div><div><h3>Conclusion</h3><p>The straightforward and fast IDC technique showed DVH metrics consistent with the sub-fractionation method using segment weight re-optimization for prostate patients. The dosimetric and geometric accuracy was shown for a full IDC workflow using film and diode array dosimetry.</p></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000502/pdfft?md5=c8011bab47fdb66631d638a672a9c9a5&pid=1-s2.0-S2405631624000502-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624000502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的MRI 引导的在线自适应治疗可以考虑点阵间的变化,但是点阵内的运动会降低治疗的准确性。这就需要采用折射内计划适应方法,如折射内漂移校正(IDC)或亚折射。IDC 利用对肿瘤位置的实时自动监测,通过重新定位区段来启动计划调整。IDC 是一种仅在必要时才进行的快速调整方法,这种方法可以减少边缘。本研究对 IDC 进行了治疗计划评估和实验验证。材料和方法对 13 名前列腺患者进行了无分段内计划适应(IDC 和亚分段)和有分段内计划适应(IDC 和亚分段)的治疗中期硅学治疗计划评估。使用剂量容积直方图(DVH)指标对适应方法进行了评估。为了在实验中验证 IDC,我们模拟了一个包含 EBT3 胶片的运动模型在治疗过程中移动,然后重新定位片段。结果规划研究显示,使用分段内适应方法比不使用适应方法更有优势,其中 IDC 和子分段显示目标覆盖率持续提高,中位目标覆盖率达到 100.0%。实验结果证实,IDC 的最小伽马通过率高达 99.1%,平均剂量偏差较小,最大值为 0.3%。结论对于前列腺患者来说,简单快捷的 IDC 技术显示出的 DVH 指标与采用分段权重再优化的亚分层方法一致。使用胶片和二极管阵列剂量测定的完整 IDC 工作流程显示了剂量测定和几何精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Treatment planning evaluation and experimental validation of the magnetic resonance-based intrafraction drift correction

Background and purpose

MRI-guided online adaptive treatments can account for interfractional variations, however intrafraction motion reduces treatment accuracy. Intrafraction plan adaptation methods, such as the Intrafraction Drift Correction (IDC) or sub-fractionation, are needed. IDC uses real-time automatic monitoring of the tumor position to initiate plan adaptations by repositioning segments. IDC is a fast adaptation method that occurs only when necessary and this method could enable margin reduction. This research provides a treatment planning evaluation and experimental validation of the IDC.

Materials and methods

An in silico treatment planning evaluation was performed for 13 prostate patients mid-treatment without and with intrafraction plan adaptation (IDC and sub-fractionation). The adaptation methods were evaluated using dose volume histogram (DVH) metrics. To experimentally verify IDC a treatment was mimicked whereby a motion phantom containing an EBT3 film moved mid-treatment, followed by repositioning of segments. In addition, the delivered treatment was irradiated on a diode array phantom for plan quality assurance purposes.

Results

The planning study showed benefits for using intrafraction adaptation methods relative to no adaptation, where the IDC and sub-fractionation showed consistently improved target coverage with median target coverages of 100.0%. The experimental results verified the IDC with high minimum gamma passing rates of 99.1% and small mean dose deviations of maximum 0.3%.

Conclusion

The straightforward and fast IDC technique showed DVH metrics consistent with the sub-fractionation method using segment weight re-optimization for prostate patients. The dosimetric and geometric accuracy was shown for a full IDC workflow using film and diode array dosimetry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信