Madelon van den Dobbelsteen, Sara L. Hackett, Bram van Asselen, Stijn Oolbekkink, Bas W. Raaymakers, Johannes C.J. de Boer
{"title":"基于磁共振的治疗规划评估和分段内漂移校正实验验证","authors":"Madelon van den Dobbelsteen, Sara L. Hackett, Bram van Asselen, Stijn Oolbekkink, Bas W. Raaymakers, Johannes C.J. de Boer","doi":"10.1016/j.phro.2024.100580","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><p>MRI-guided online adaptive treatments can account for interfractional variations, however intrafraction motion reduces treatment accuracy. Intrafraction plan adaptation methods, such as the Intrafraction Drift Correction (IDC) or sub-fractionation, are needed. IDC uses real-time automatic monitoring of the tumor position to initiate plan adaptations by repositioning segments. IDC is a fast adaptation method that occurs only when necessary and this method could enable margin reduction. This research provides a treatment planning evaluation and experimental validation of the IDC.</p></div><div><h3>Materials and methods</h3><p>An in silico treatment planning evaluation was performed for 13 prostate patients mid-treatment without and with intrafraction plan adaptation (IDC and sub-fractionation). The adaptation methods were evaluated using dose volume histogram (DVH) metrics. To experimentally verify IDC a treatment was mimicked whereby a motion phantom containing an EBT3 film moved mid-treatment, followed by repositioning of segments. In addition, the delivered treatment was irradiated on a diode array phantom for plan quality assurance purposes.</p></div><div><h3>Results</h3><p>The planning study showed benefits for using intrafraction adaptation methods relative to no adaptation, where the IDC and sub-fractionation showed consistently improved target coverage with median target coverages of 100.0%. The experimental results verified the IDC with high minimum gamma passing rates of 99.1% and small mean dose deviations of maximum 0.3%.</p></div><div><h3>Conclusion</h3><p>The straightforward and fast IDC technique showed DVH metrics consistent with the sub-fractionation method using segment weight re-optimization for prostate patients. The dosimetric and geometric accuracy was shown for a full IDC workflow using film and diode array dosimetry.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"30 ","pages":"Article 100580"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624000502/pdfft?md5=c8011bab47fdb66631d638a672a9c9a5&pid=1-s2.0-S2405631624000502-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Treatment planning evaluation and experimental validation of the magnetic resonance-based intrafraction drift correction\",\"authors\":\"Madelon van den Dobbelsteen, Sara L. Hackett, Bram van Asselen, Stijn Oolbekkink, Bas W. Raaymakers, Johannes C.J. de Boer\",\"doi\":\"10.1016/j.phro.2024.100580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><p>MRI-guided online adaptive treatments can account for interfractional variations, however intrafraction motion reduces treatment accuracy. Intrafraction plan adaptation methods, such as the Intrafraction Drift Correction (IDC) or sub-fractionation, are needed. IDC uses real-time automatic monitoring of the tumor position to initiate plan adaptations by repositioning segments. IDC is a fast adaptation method that occurs only when necessary and this method could enable margin reduction. This research provides a treatment planning evaluation and experimental validation of the IDC.</p></div><div><h3>Materials and methods</h3><p>An in silico treatment planning evaluation was performed for 13 prostate patients mid-treatment without and with intrafraction plan adaptation (IDC and sub-fractionation). The adaptation methods were evaluated using dose volume histogram (DVH) metrics. To experimentally verify IDC a treatment was mimicked whereby a motion phantom containing an EBT3 film moved mid-treatment, followed by repositioning of segments. In addition, the delivered treatment was irradiated on a diode array phantom for plan quality assurance purposes.</p></div><div><h3>Results</h3><p>The planning study showed benefits for using intrafraction adaptation methods relative to no adaptation, where the IDC and sub-fractionation showed consistently improved target coverage with median target coverages of 100.0%. The experimental results verified the IDC with high minimum gamma passing rates of 99.1% and small mean dose deviations of maximum 0.3%.</p></div><div><h3>Conclusion</h3><p>The straightforward and fast IDC technique showed DVH metrics consistent with the sub-fractionation method using segment weight re-optimization for prostate patients. The dosimetric and geometric accuracy was shown for a full IDC workflow using film and diode array dosimetry.</p></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":\"30 \",\"pages\":\"Article 100580\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000502/pdfft?md5=c8011bab47fdb66631d638a672a9c9a5&pid=1-s2.0-S2405631624000502-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624000502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Treatment planning evaluation and experimental validation of the magnetic resonance-based intrafraction drift correction
Background and purpose
MRI-guided online adaptive treatments can account for interfractional variations, however intrafraction motion reduces treatment accuracy. Intrafraction plan adaptation methods, such as the Intrafraction Drift Correction (IDC) or sub-fractionation, are needed. IDC uses real-time automatic monitoring of the tumor position to initiate plan adaptations by repositioning segments. IDC is a fast adaptation method that occurs only when necessary and this method could enable margin reduction. This research provides a treatment planning evaluation and experimental validation of the IDC.
Materials and methods
An in silico treatment planning evaluation was performed for 13 prostate patients mid-treatment without and with intrafraction plan adaptation (IDC and sub-fractionation). The adaptation methods were evaluated using dose volume histogram (DVH) metrics. To experimentally verify IDC a treatment was mimicked whereby a motion phantom containing an EBT3 film moved mid-treatment, followed by repositioning of segments. In addition, the delivered treatment was irradiated on a diode array phantom for plan quality assurance purposes.
Results
The planning study showed benefits for using intrafraction adaptation methods relative to no adaptation, where the IDC and sub-fractionation showed consistently improved target coverage with median target coverages of 100.0%. The experimental results verified the IDC with high minimum gamma passing rates of 99.1% and small mean dose deviations of maximum 0.3%.
Conclusion
The straightforward and fast IDC technique showed DVH metrics consistent with the sub-fractionation method using segment weight re-optimization for prostate patients. The dosimetric and geometric accuracy was shown for a full IDC workflow using film and diode array dosimetry.