Kota Kojima , Hiromori Ohkubo , Ryotaro Kawasumi , Kouji Hirota
{"title":"复制聚合酶δ的Pold4亚基促进断裂模板的叉慢化","authors":"Kota Kojima , Hiromori Ohkubo , Ryotaro Kawasumi , Kouji Hirota","doi":"10.1016/j.dnarep.2024.103688","DOIUrl":null,"url":null,"abstract":"<div><p>Single-strand breaks (SSBs) are the most frequent type of lesion, and replication across such lesions leads to double-strand breaks (DSBs). DSBs that arise during replication are repaired by homologous recombination (HR) and are suppressed by fork reversal. Poly[ADP-ribose] polymerase I (PARP1) and the proofreading exonuclease activity of replicative polymerase ε (Polε) are required for fork reversal when leading strand replication encounters SSBs. However, the mechanism underlying fork reversal at the SSB during lagging-strand replication remains elusive. We here demonstrate that the Pold4 subunit of replicative polymerase δ (Polδ) plays a role in promoting fork reversal during lagging strand replication on a broken template. <em>POLD4</em><sup><em>-/-</em></sup> cells exhibited heightened sensitivity to camptothecin (CPT) but not to other DNA-damaging agents compared to wild-type cells. This selective CPT sensitivity in <em>POLD4</em><sup><em>-/-</em></sup> cells suggests that Pold4 suppresses DSBs during replication, as CPT induces significant SSBs during replication, which subsequently lead to DSBs. To explore the functional interactions among Pold4, Polε exonuclease, and PARP1 in DSB suppression, we generated <em>PARP1</em><sup><em>-/-</em></sup>, <em>POLD4</em><sup><em>-/-</em></sup>, Polε exonuclease-deficient <em>POLE1</em><sup><em>exo-/-</em></sup>, <em>PARP1</em><sup><em>-/-</em></sup><em>/POLD4</em><sup><em>-/-</em></sup>, and <em>POLD4</em><sup><em>-/-</em></sup><em>/POLE1</em><sup><em>exo-/-</em></sup> cells. These epistasis analyses showed that Pold4 is involved in the PARP1-Polε exonuclease-mediated fork reversal following CPT treatment. These results suggest that Pold4 aids in fork reversal when lagging strand replication stalls on a broken template. In conclusion, the Pold4 subunit of Polδ has roles in the PARP1-Polε exonuclease-mediated fork reversal, contributing to the suppression of DSBs.</p></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"139 ","pages":"Article 103688"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pold4 subunit of replicative polymerase δ promotes fork slowing at broken templates\",\"authors\":\"Kota Kojima , Hiromori Ohkubo , Ryotaro Kawasumi , Kouji Hirota\",\"doi\":\"10.1016/j.dnarep.2024.103688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Single-strand breaks (SSBs) are the most frequent type of lesion, and replication across such lesions leads to double-strand breaks (DSBs). DSBs that arise during replication are repaired by homologous recombination (HR) and are suppressed by fork reversal. Poly[ADP-ribose] polymerase I (PARP1) and the proofreading exonuclease activity of replicative polymerase ε (Polε) are required for fork reversal when leading strand replication encounters SSBs. However, the mechanism underlying fork reversal at the SSB during lagging-strand replication remains elusive. We here demonstrate that the Pold4 subunit of replicative polymerase δ (Polδ) plays a role in promoting fork reversal during lagging strand replication on a broken template. <em>POLD4</em><sup><em>-/-</em></sup> cells exhibited heightened sensitivity to camptothecin (CPT) but not to other DNA-damaging agents compared to wild-type cells. This selective CPT sensitivity in <em>POLD4</em><sup><em>-/-</em></sup> cells suggests that Pold4 suppresses DSBs during replication, as CPT induces significant SSBs during replication, which subsequently lead to DSBs. To explore the functional interactions among Pold4, Polε exonuclease, and PARP1 in DSB suppression, we generated <em>PARP1</em><sup><em>-/-</em></sup>, <em>POLD4</em><sup><em>-/-</em></sup>, Polε exonuclease-deficient <em>POLE1</em><sup><em>exo-/-</em></sup>, <em>PARP1</em><sup><em>-/-</em></sup><em>/POLD4</em><sup><em>-/-</em></sup>, and <em>POLD4</em><sup><em>-/-</em></sup><em>/POLE1</em><sup><em>exo-/-</em></sup> cells. These epistasis analyses showed that Pold4 is involved in the PARP1-Polε exonuclease-mediated fork reversal following CPT treatment. These results suggest that Pold4 aids in fork reversal when lagging strand replication stalls on a broken template. In conclusion, the Pold4 subunit of Polδ has roles in the PARP1-Polε exonuclease-mediated fork reversal, contributing to the suppression of DSBs.</p></div>\",\"PeriodicalId\":300,\"journal\":{\"name\":\"DNA Repair\",\"volume\":\"139 \",\"pages\":\"Article 103688\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Repair\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568786424000648\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786424000648","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Pold4 subunit of replicative polymerase δ promotes fork slowing at broken templates
Single-strand breaks (SSBs) are the most frequent type of lesion, and replication across such lesions leads to double-strand breaks (DSBs). DSBs that arise during replication are repaired by homologous recombination (HR) and are suppressed by fork reversal. Poly[ADP-ribose] polymerase I (PARP1) and the proofreading exonuclease activity of replicative polymerase ε (Polε) are required for fork reversal when leading strand replication encounters SSBs. However, the mechanism underlying fork reversal at the SSB during lagging-strand replication remains elusive. We here demonstrate that the Pold4 subunit of replicative polymerase δ (Polδ) plays a role in promoting fork reversal during lagging strand replication on a broken template. POLD4-/- cells exhibited heightened sensitivity to camptothecin (CPT) but not to other DNA-damaging agents compared to wild-type cells. This selective CPT sensitivity in POLD4-/- cells suggests that Pold4 suppresses DSBs during replication, as CPT induces significant SSBs during replication, which subsequently lead to DSBs. To explore the functional interactions among Pold4, Polε exonuclease, and PARP1 in DSB suppression, we generated PARP1-/-, POLD4-/-, Polε exonuclease-deficient POLE1exo-/-, PARP1-/-/POLD4-/-, and POLD4-/-/POLE1exo-/- cells. These epistasis analyses showed that Pold4 is involved in the PARP1-Polε exonuclease-mediated fork reversal following CPT treatment. These results suggest that Pold4 aids in fork reversal when lagging strand replication stalls on a broken template. In conclusion, the Pold4 subunit of Polδ has roles in the PARP1-Polε exonuclease-mediated fork reversal, contributing to the suppression of DSBs.
期刊介绍:
DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.
DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.