Jessica Z. LeRoy , Henry F. Doyle , P. Ryan Jackson , Charles V. Cigrand
{"title":"俄亥俄州毛米河草鱼(Ctenopharyngodon idella)的繁殖:第二部分-卵和幼体漂流的最佳河流条件","authors":"Jessica Z. LeRoy , Henry F. Doyle , P. Ryan Jackson , Charles V. Cigrand","doi":"10.1016/j.jglr.2024.102345","DOIUrl":null,"url":null,"abstract":"<div><p>This study uses a one-dimensional steady-state hydraulic model and the Fluvial Egg Drift Simulator (FluEgg) to model the drift and dispersion of grass carp eggs and larvae in the Maumee River, Ohio, for 180 scenarios representing different combinations of 10 river flows, 6 water temperatures, and 3 spawning locations. The FluEgg simulations were used to quantify in-river suspended hatching rates (the percentage of eggs that hatch within the river and in suspension) and in-river larval retention rates (the percentage of larvae that reach the gas bladder inflation stage within the river after hatching in suspension), and identify which scenarios produce the highest likelihood of recruitment. The simulations indicate that at low flows, in-river suspended hatching and larval retention rates in the Maumee River are limited by the capacity of the flow to keep fertilized eggs in suspension, whereas at high flows, the limiting factor is the distance available for the eggs/larvae to drift in the river. A wide range of scenarios result in eggs hatching within the river, but all larvae drift into Maumee Bay prior to the gas bladder inflation stage when flows exceed the mean annual flow. The simulations were assessed in the context of the hydraulic conditions that trigger spawning and maximize egg fertilization and the nursery habitat requirements for larval grass carp. The results indicate that the Maumee River, although suitable for grass carp spawning, may not be an ideal setting for recruitment unless Maumee Bay provides adequate nursery habitat for larvae.</p></div>","PeriodicalId":54818,"journal":{"name":"Journal of Great Lakes Research","volume":"50 3","pages":"Article 102345"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0380133024000844/pdfft?md5=b82b76a90319138ea39ab38da889b9cc&pid=1-s2.0-S0380133024000844-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reproduction of grass carp (Ctenopharyngodon idella) in the Maumee River, Ohio: Part 2—Optimal river conditions for egg and larval drift\",\"authors\":\"Jessica Z. LeRoy , Henry F. Doyle , P. Ryan Jackson , Charles V. Cigrand\",\"doi\":\"10.1016/j.jglr.2024.102345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study uses a one-dimensional steady-state hydraulic model and the Fluvial Egg Drift Simulator (FluEgg) to model the drift and dispersion of grass carp eggs and larvae in the Maumee River, Ohio, for 180 scenarios representing different combinations of 10 river flows, 6 water temperatures, and 3 spawning locations. The FluEgg simulations were used to quantify in-river suspended hatching rates (the percentage of eggs that hatch within the river and in suspension) and in-river larval retention rates (the percentage of larvae that reach the gas bladder inflation stage within the river after hatching in suspension), and identify which scenarios produce the highest likelihood of recruitment. The simulations indicate that at low flows, in-river suspended hatching and larval retention rates in the Maumee River are limited by the capacity of the flow to keep fertilized eggs in suspension, whereas at high flows, the limiting factor is the distance available for the eggs/larvae to drift in the river. A wide range of scenarios result in eggs hatching within the river, but all larvae drift into Maumee Bay prior to the gas bladder inflation stage when flows exceed the mean annual flow. The simulations were assessed in the context of the hydraulic conditions that trigger spawning and maximize egg fertilization and the nursery habitat requirements for larval grass carp. The results indicate that the Maumee River, although suitable for grass carp spawning, may not be an ideal setting for recruitment unless Maumee Bay provides adequate nursery habitat for larvae.</p></div>\",\"PeriodicalId\":54818,\"journal\":{\"name\":\"Journal of Great Lakes Research\",\"volume\":\"50 3\",\"pages\":\"Article 102345\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0380133024000844/pdfft?md5=b82b76a90319138ea39ab38da889b9cc&pid=1-s2.0-S0380133024000844-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Great Lakes Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0380133024000844\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Great Lakes Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0380133024000844","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Reproduction of grass carp (Ctenopharyngodon idella) in the Maumee River, Ohio: Part 2—Optimal river conditions for egg and larval drift
This study uses a one-dimensional steady-state hydraulic model and the Fluvial Egg Drift Simulator (FluEgg) to model the drift and dispersion of grass carp eggs and larvae in the Maumee River, Ohio, for 180 scenarios representing different combinations of 10 river flows, 6 water temperatures, and 3 spawning locations. The FluEgg simulations were used to quantify in-river suspended hatching rates (the percentage of eggs that hatch within the river and in suspension) and in-river larval retention rates (the percentage of larvae that reach the gas bladder inflation stage within the river after hatching in suspension), and identify which scenarios produce the highest likelihood of recruitment. The simulations indicate that at low flows, in-river suspended hatching and larval retention rates in the Maumee River are limited by the capacity of the flow to keep fertilized eggs in suspension, whereas at high flows, the limiting factor is the distance available for the eggs/larvae to drift in the river. A wide range of scenarios result in eggs hatching within the river, but all larvae drift into Maumee Bay prior to the gas bladder inflation stage when flows exceed the mean annual flow. The simulations were assessed in the context of the hydraulic conditions that trigger spawning and maximize egg fertilization and the nursery habitat requirements for larval grass carp. The results indicate that the Maumee River, although suitable for grass carp spawning, may not be an ideal setting for recruitment unless Maumee Bay provides adequate nursery habitat for larvae.
期刊介绍:
Published six times per year, the Journal of Great Lakes Research is multidisciplinary in its coverage, publishing manuscripts on a wide range of theoretical and applied topics in the natural science fields of biology, chemistry, physics, geology, as well as social sciences of the large lakes of the world and their watersheds. Large lakes generally are considered as those lakes which have a mean surface area of >500 km2 (see Herdendorf, C.E. 1982. Large lakes of the world. J. Great Lakes Res. 8:379-412, for examples), although smaller lakes may be considered, especially if they are very deep. We also welcome contributions on saline lakes and research on estuarine waters where the results have application to large lakes.