用化学共沉淀法制备的双功能 ZnO/NiO/Co3O4 三元纳米复合材料增强了染料敏化太阳能电池的性能和电化学电容行为

IF 6.7 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Kandasamy , Ahmad Husain , S. Suresh , Jayant Giri , Dheyaa J. Jasim , P. Rameshkumar , Hamad A. Al-Lohedan , S. Thambidurai , Niraj Kumar , M.N.M. Ansari , S. Murugesan
{"title":"用化学共沉淀法制备的双功能 ZnO/NiO/Co3O4 三元纳米复合材料增强了染料敏化太阳能电池的性能和电化学电容行为","authors":"M. Kandasamy ,&nbsp;Ahmad Husain ,&nbsp;S. Suresh ,&nbsp;Jayant Giri ,&nbsp;Dheyaa J. Jasim ,&nbsp;P. Rameshkumar ,&nbsp;Hamad A. Al-Lohedan ,&nbsp;S. Thambidurai ,&nbsp;Niraj Kumar ,&nbsp;M.N.M. Ansari ,&nbsp;S. Murugesan","doi":"10.1016/j.jsamd.2024.100726","DOIUrl":null,"url":null,"abstract":"<div><p>Increasing prerequisites for sustainable energy storage and conversion technologies have necessitated the exploration of advanced materials with improved properties. Here, we present the synthesis and characterization of ZnO nanoparticles (NPs), ZnO/NiO, ZnO/Co<sub>3</sub>O<sub>4</sub> and ZnO/NiO/Co<sub>3</sub>O<sub>4</sub> NCs as promising bi-functional materials for dye-sensitized solar cell (DSSC) and electrochemical energy storage applications. A facile chemical co-precipitation approach was followed to synthesize pure ZnO NPs, ZnO/NiO, ZnO/Co<sub>3</sub>O<sub>4</sub> and ZnO/NiO/Co<sub>3</sub>O<sub>4</sub> NCs. The structural and morphological analyses revealed the successful integration of ZnO, NiO, and Co<sub>3</sub>O<sub>4</sub> NPs and also the formation of well-defined core-shell and homogenous nanocomposite structures. The XRD and HRTEM analyses confirmed the crystalline nature and nanoscale morphology of synthesized materials, respectively. The photovoltaic performance of DSSC fabricated using ternary ZnO/NiO/Co<sub>3</sub>O<sub>4</sub> NC photoanode showed optimum dye-loading and best solar to electrical energy conversion efficiency with J<sub>sc</sub> of 11.29 mA cm<sup>−2</sup> and ƞ of 4.66%, which was considerably higher than the DSSC fabricated using pure ZnO NPs photoanode (ƞ = 2.01%). The increment in photocurrent density (J<sub>sc</sub>) could be ascribed to the perfect band alignment of NiO and Co<sub>3</sub>O<sub>4</sub> NPs in the ternary NC. Further, the ZnO/NiO/Co<sub>3</sub>O<sub>4</sub> NC photoanode integrated DSSC disclosed 97% retainment in energy conversion efficiency even after 10 days of operation. The electrochemical performance of supercapacitor fabricated using ternary ZnO/NiO/Co<sub>3</sub>O<sub>4</sub> NC showed high specific capacitance of 534.7 Fg<sup>−1</sup> at 1 Ag<sup>−1</sup> with favourable rate ability (∼52% at 16 Ag<sup>−1</sup>), good cyclic stability (91.07%) and low internal resistance. Moreover, the ZnO/NiO/Co<sub>3</sub>O<sub>4</sub> NC at a current density of 2 Ag<sup>−1</sup> exhibited a significantly high capacitance value of 463.1 Fg<sup>−1</sup>, which was 1.93, 1.58 and 1.22 times greater than ZnO NPs, ZnO/Co<sub>3</sub>O<sub>4</sub> NC and ZnO/NiO NC, respectively.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924000571/pdfft?md5=97b627409a419260eee50586a6c87b57&pid=1-s2.0-S2468217924000571-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced dye-sensitized solar cell performance and electrochemical capacitive behavior of bi-functional ZnO/NiO/Co3O4 ternary nanocomposite prepared by chemical co-precipitation method\",\"authors\":\"M. Kandasamy ,&nbsp;Ahmad Husain ,&nbsp;S. Suresh ,&nbsp;Jayant Giri ,&nbsp;Dheyaa J. Jasim ,&nbsp;P. Rameshkumar ,&nbsp;Hamad A. Al-Lohedan ,&nbsp;S. Thambidurai ,&nbsp;Niraj Kumar ,&nbsp;M.N.M. Ansari ,&nbsp;S. Murugesan\",\"doi\":\"10.1016/j.jsamd.2024.100726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Increasing prerequisites for sustainable energy storage and conversion technologies have necessitated the exploration of advanced materials with improved properties. Here, we present the synthesis and characterization of ZnO nanoparticles (NPs), ZnO/NiO, ZnO/Co<sub>3</sub>O<sub>4</sub> and ZnO/NiO/Co<sub>3</sub>O<sub>4</sub> NCs as promising bi-functional materials for dye-sensitized solar cell (DSSC) and electrochemical energy storage applications. A facile chemical co-precipitation approach was followed to synthesize pure ZnO NPs, ZnO/NiO, ZnO/Co<sub>3</sub>O<sub>4</sub> and ZnO/NiO/Co<sub>3</sub>O<sub>4</sub> NCs. The structural and morphological analyses revealed the successful integration of ZnO, NiO, and Co<sub>3</sub>O<sub>4</sub> NPs and also the formation of well-defined core-shell and homogenous nanocomposite structures. The XRD and HRTEM analyses confirmed the crystalline nature and nanoscale morphology of synthesized materials, respectively. The photovoltaic performance of DSSC fabricated using ternary ZnO/NiO/Co<sub>3</sub>O<sub>4</sub> NC photoanode showed optimum dye-loading and best solar to electrical energy conversion efficiency with J<sub>sc</sub> of 11.29 mA cm<sup>−2</sup> and ƞ of 4.66%, which was considerably higher than the DSSC fabricated using pure ZnO NPs photoanode (ƞ = 2.01%). The increment in photocurrent density (J<sub>sc</sub>) could be ascribed to the perfect band alignment of NiO and Co<sub>3</sub>O<sub>4</sub> NPs in the ternary NC. Further, the ZnO/NiO/Co<sub>3</sub>O<sub>4</sub> NC photoanode integrated DSSC disclosed 97% retainment in energy conversion efficiency even after 10 days of operation. The electrochemical performance of supercapacitor fabricated using ternary ZnO/NiO/Co<sub>3</sub>O<sub>4</sub> NC showed high specific capacitance of 534.7 Fg<sup>−1</sup> at 1 Ag<sup>−1</sup> with favourable rate ability (∼52% at 16 Ag<sup>−1</sup>), good cyclic stability (91.07%) and low internal resistance. Moreover, the ZnO/NiO/Co<sub>3</sub>O<sub>4</sub> NC at a current density of 2 Ag<sup>−1</sup> exhibited a significantly high capacitance value of 463.1 Fg<sup>−1</sup>, which was 1.93, 1.58 and 1.22 times greater than ZnO NPs, ZnO/Co<sub>3</sub>O<sub>4</sub> NC and ZnO/NiO NC, respectively.</p></div>\",\"PeriodicalId\":17219,\"journal\":{\"name\":\"Journal of Science: Advanced Materials and Devices\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468217924000571/pdfft?md5=97b627409a419260eee50586a6c87b57&pid=1-s2.0-S2468217924000571-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science: Advanced Materials and Devices\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468217924000571\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924000571","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可持续能源储存和转换技术的前提条件越来越多,因此有必要探索具有更好性能的先进材料。在此,我们介绍了氧化锌纳米颗粒(NPs)、氧化锌/氧化镍、氧化锌/Co3O4 和氧化锌/氧化镍/Co3O4 NCs 的合成和表征,它们是染料敏化太阳能电池(DSSC)和电化学储能应用中很有前途的双功能材料。采用简便的化学共沉淀方法合成了纯 ZnO NPs、ZnO/NiO、ZnO/Co3O4 和 ZnO/NiO/Co3O4 NCs。结构和形态分析表明,ZnO、NiO 和 Co3O4 NPs 成功地结合在一起,并形成了定义明确的核壳和均质纳米复合结构。XRD 和 HRTEM 分析分别证实了合成材料的结晶性和纳米级形貌。使用 ZnO/NiO/Co3O4 NC 三元光阳极制造的 DSSC 的光伏性能显示出最佳的染料负载和最佳的太阳能到电能转换效率,Jsc 为 11.29 mA cm-2,ƞ 为 4.66%,大大高于使用纯 ZnO NPs 光阳极制造的 DSSC(ƞ = 2.01%)。光电流密度(Jsc)的增加可归因于三元 NC 中 NiO 和 Co3O4 NPs 的完美带排列。此外,ZnO/NiO/Co3O4 NC 光阳极集成 DSSC 在运行 10 天后仍能保持 97% 的能量转换效率。使用 ZnO/NiO/Co3O4 三元数控系统制造的超级电容器的电化学性能显示,在 1 Ag-1 的条件下,比电容高达 534.7 Fg-1,具有良好的速率能力(在 16 Ag-1 的条件下为 52%)、良好的循环稳定性(91.07%)和低内阻。此外,ZnO/NiO/Co3O4 NC 在电流密度为 2 Ag-1 时的电容值高达 463.1 Fg-1,分别是 ZnO NPs、ZnO/Co3O4 NC 和 ZnO/NiO NC 的 1.93、1.58 和 1.22 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced dye-sensitized solar cell performance and electrochemical capacitive behavior of bi-functional ZnO/NiO/Co3O4 ternary nanocomposite prepared by chemical co-precipitation method

Increasing prerequisites for sustainable energy storage and conversion technologies have necessitated the exploration of advanced materials with improved properties. Here, we present the synthesis and characterization of ZnO nanoparticles (NPs), ZnO/NiO, ZnO/Co3O4 and ZnO/NiO/Co3O4 NCs as promising bi-functional materials for dye-sensitized solar cell (DSSC) and electrochemical energy storage applications. A facile chemical co-precipitation approach was followed to synthesize pure ZnO NPs, ZnO/NiO, ZnO/Co3O4 and ZnO/NiO/Co3O4 NCs. The structural and morphological analyses revealed the successful integration of ZnO, NiO, and Co3O4 NPs and also the formation of well-defined core-shell and homogenous nanocomposite structures. The XRD and HRTEM analyses confirmed the crystalline nature and nanoscale morphology of synthesized materials, respectively. The photovoltaic performance of DSSC fabricated using ternary ZnO/NiO/Co3O4 NC photoanode showed optimum dye-loading and best solar to electrical energy conversion efficiency with Jsc of 11.29 mA cm−2 and ƞ of 4.66%, which was considerably higher than the DSSC fabricated using pure ZnO NPs photoanode (ƞ = 2.01%). The increment in photocurrent density (Jsc) could be ascribed to the perfect band alignment of NiO and Co3O4 NPs in the ternary NC. Further, the ZnO/NiO/Co3O4 NC photoanode integrated DSSC disclosed 97% retainment in energy conversion efficiency even after 10 days of operation. The electrochemical performance of supercapacitor fabricated using ternary ZnO/NiO/Co3O4 NC showed high specific capacitance of 534.7 Fg−1 at 1 Ag−1 with favourable rate ability (∼52% at 16 Ag−1), good cyclic stability (91.07%) and low internal resistance. Moreover, the ZnO/NiO/Co3O4 NC at a current density of 2 Ag−1 exhibited a significantly high capacitance value of 463.1 Fg−1, which was 1.93, 1.58 and 1.22 times greater than ZnO NPs, ZnO/Co3O4 NC and ZnO/NiO NC, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Science: Advanced Materials and Devices
Journal of Science: Advanced Materials and Devices Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.90
自引率
2.50%
发文量
88
审稿时长
47 days
期刊介绍: In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research. Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science. With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信