Biswajit Rath, K. Sanjay Kumar, D. Vamshee Krishna, G. K. Surya Viswanadh
{"title":"解析函数 kth-root 变换的第三个汉克尔行列式的锐界","authors":"Biswajit Rath, K. Sanjay Kumar, D. Vamshee Krishna, G. K. Surya Viswanadh","doi":"10.1007/s13370-024-01174-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we delve into the fascinating realm of analytic mappings within the open unit disc, focusing on functions that are standardly normalized. Our research is centered on determining the sharp upper bound of the third Hankel determinant for a <i>k</i>th-root transformation applied to a specific subclass of these analytic functions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The sharp bound of the third Hankel determinant of kth-root transformation for analytic functions\",\"authors\":\"Biswajit Rath, K. Sanjay Kumar, D. Vamshee Krishna, G. K. Surya Viswanadh\",\"doi\":\"10.1007/s13370-024-01174-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we delve into the fascinating realm of analytic mappings within the open unit disc, focusing on functions that are standardly normalized. Our research is centered on determining the sharp upper bound of the third Hankel determinant for a <i>k</i>th-root transformation applied to a specific subclass of these analytic functions.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-024-01174-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01174-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们深入探讨了开放单位圆盘内解析映射的迷人领域,重点是标准归一化函数。我们的研究重点是确定应用于这些解析函数特定子类的第 k 次根变换的第三个汉克尔行列式的尖锐上界。
The sharp bound of the third Hankel determinant of kth-root transformation for analytic functions
In this paper, we delve into the fascinating realm of analytic mappings within the open unit disc, focusing on functions that are standardly normalized. Our research is centered on determining the sharp upper bound of the third Hankel determinant for a kth-root transformation applied to a specific subclass of these analytic functions.