{"title":"GanESS:用惰性气体探测相干弹性中微核散射","authors":"A. Simón","doi":"10.1088/1748-0221/19/04/c04041","DOIUrl":null,"url":null,"abstract":"\n The recent detection of the coherent elastic neutrino-nucleus scattering (CEνNS) opens the possibility to use neutrinos to explore physics beyond standard model with small size detectors. However, the CEνNS process generates signals at the few keV level, requiring very sensitive detecting technologies for its detection. The European Spallation Source (ESS) has been identified as an optimal source of low energy neutrinos offering an opportunity for a definitive exploration of all phenomenological applications of CEνNS.\n\nGanESS will use a high-pressure noble gas time projection chamber to measure CEνNS at ESS in gaseous Xe, Ar and Kr. Such technique appears extraordinarily promising for detecting the process, although characterization of the response to few-keV nuclear recoils will be necessary. With this goal, we are currently commissioning GaP, a small prototype capable of operating up to 50 bar. GaP will serve to fully evaluate the low energy response of the technique, with a strong focus on measuring the quenching factor for the different noble gases that will later be used at GanESS. An overview of the GanESS project with a focus on the status of GaP and its short-term plans is presented.","PeriodicalId":507814,"journal":{"name":"Journal of Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GanESS: detecting coherent elastic neutrino-nucleus scattering with noble gases\",\"authors\":\"A. Simón\",\"doi\":\"10.1088/1748-0221/19/04/c04041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The recent detection of the coherent elastic neutrino-nucleus scattering (CEνNS) opens the possibility to use neutrinos to explore physics beyond standard model with small size detectors. However, the CEνNS process generates signals at the few keV level, requiring very sensitive detecting technologies for its detection. The European Spallation Source (ESS) has been identified as an optimal source of low energy neutrinos offering an opportunity for a definitive exploration of all phenomenological applications of CEνNS.\\n\\nGanESS will use a high-pressure noble gas time projection chamber to measure CEνNS at ESS in gaseous Xe, Ar and Kr. Such technique appears extraordinarily promising for detecting the process, although characterization of the response to few-keV nuclear recoils will be necessary. With this goal, we are currently commissioning GaP, a small prototype capable of operating up to 50 bar. GaP will serve to fully evaluate the low energy response of the technique, with a strong focus on measuring the quenching factor for the different noble gases that will later be used at GanESS. An overview of the GanESS project with a focus on the status of GaP and its short-term plans is presented.\",\"PeriodicalId\":507814,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/19/04/c04041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/19/04/c04041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GanESS: detecting coherent elastic neutrino-nucleus scattering with noble gases
The recent detection of the coherent elastic neutrino-nucleus scattering (CEνNS) opens the possibility to use neutrinos to explore physics beyond standard model with small size detectors. However, the CEνNS process generates signals at the few keV level, requiring very sensitive detecting technologies for its detection. The European Spallation Source (ESS) has been identified as an optimal source of low energy neutrinos offering an opportunity for a definitive exploration of all phenomenological applications of CEνNS.
GanESS will use a high-pressure noble gas time projection chamber to measure CEνNS at ESS in gaseous Xe, Ar and Kr. Such technique appears extraordinarily promising for detecting the process, although characterization of the response to few-keV nuclear recoils will be necessary. With this goal, we are currently commissioning GaP, a small prototype capable of operating up to 50 bar. GaP will serve to fully evaluate the low energy response of the technique, with a strong focus on measuring the quenching factor for the different noble gases that will later be used at GanESS. An overview of the GanESS project with a focus on the status of GaP and its short-term plans is presented.