基于支持数据的信号识别核心集选择方法

Yang Ying, Lidong Zhu, Changjie Cao
{"title":"基于支持数据的信号识别核心集选择方法","authors":"Yang Ying, Lidong Zhu, Changjie Cao","doi":"10.23919/JCC.fa.2023-0480.202404","DOIUrl":null,"url":null,"abstract":"In recent years, deep learning-based signal recognition technology has gained attention and emerged as an important approach for safeguarding the electromagnetic environment. However, training deep learning-based classifiers on large signal datasets with redundant samples requires significant memory and high costs. This paper proposes a support databased core-set selection method (SD) for signal recognition, aiming to screen a representative subset that approximates the large signal dataset. Specifically, this subset can be identified by employing the labeled information during the early stages of model training, as some training samples are labeled as supporting data frequently. This support data is crucial for model training and can be found using a border sample selector. Simulation results demonstrate that the SD method minimizes the impact on model recognition performance while reducing the dataset size, and outperforms five other state-of-the-art core-set selection methods when the fraction of training sample kept is less than or equal to 0.3 on the RML2016.04C dataset or 0.5 on the RML22 dataset. The SD method is particularly helpful for signal recognition tasks with limited memory and computing resources.","PeriodicalId":504777,"journal":{"name":"China Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A support data-based core-set selection method for signal recognition\",\"authors\":\"Yang Ying, Lidong Zhu, Changjie Cao\",\"doi\":\"10.23919/JCC.fa.2023-0480.202404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, deep learning-based signal recognition technology has gained attention and emerged as an important approach for safeguarding the electromagnetic environment. However, training deep learning-based classifiers on large signal datasets with redundant samples requires significant memory and high costs. This paper proposes a support databased core-set selection method (SD) for signal recognition, aiming to screen a representative subset that approximates the large signal dataset. Specifically, this subset can be identified by employing the labeled information during the early stages of model training, as some training samples are labeled as supporting data frequently. This support data is crucial for model training and can be found using a border sample selector. Simulation results demonstrate that the SD method minimizes the impact on model recognition performance while reducing the dataset size, and outperforms five other state-of-the-art core-set selection methods when the fraction of training sample kept is less than or equal to 0.3 on the RML2016.04C dataset or 0.5 on the RML22 dataset. The SD method is particularly helpful for signal recognition tasks with limited memory and computing resources.\",\"PeriodicalId\":504777,\"journal\":{\"name\":\"China Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/JCC.fa.2023-0480.202404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/JCC.fa.2023-0480.202404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于深度学习的信号识别技术备受关注,成为保护电磁环境的重要方法。然而,在具有冗余样本的大型信号数据集上训练基于深度学习的分类器需要大量内存和高成本。本文提出了一种基于支持数据库的信号识别核心集选择方法(SD),旨在筛选出与大型信号数据集近似的代表性子集。具体来说,由于一些训练样本经常被标注为支持数据,因此可以在模型训练的早期阶段利用标注信息来确定这个子集。这些支持数据对模型训练至关重要,可以通过边界样本选择器找到。仿真结果表明,当 RML2016.04C 数据集上保留的训练样本分数小于或等于 0.3 或 RML22 数据集上保留的训练样本分数小于或等于 0.5 时,SD 方法能在减少数据集大小的同时最大限度地降低对模型识别性能的影响,其性能优于其他五种最先进的核心集选择方法。SD 方法尤其适用于内存和计算资源有限的信号识别任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A support data-based core-set selection method for signal recognition
In recent years, deep learning-based signal recognition technology has gained attention and emerged as an important approach for safeguarding the electromagnetic environment. However, training deep learning-based classifiers on large signal datasets with redundant samples requires significant memory and high costs. This paper proposes a support databased core-set selection method (SD) for signal recognition, aiming to screen a representative subset that approximates the large signal dataset. Specifically, this subset can be identified by employing the labeled information during the early stages of model training, as some training samples are labeled as supporting data frequently. This support data is crucial for model training and can be found using a border sample selector. Simulation results demonstrate that the SD method minimizes the impact on model recognition performance while reducing the dataset size, and outperforms five other state-of-the-art core-set selection methods when the fraction of training sample kept is less than or equal to 0.3 on the RML2016.04C dataset or 0.5 on the RML22 dataset. The SD method is particularly helpful for signal recognition tasks with limited memory and computing resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信