基于 Voronoi 的 Splinegon 分解和最短路径树计算

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Xiyu Bao , Meng Qi , Chenglei Yang , Wei Gai
{"title":"基于 Voronoi 的 Splinegon 分解和最短路径树计算","authors":"Xiyu Bao ,&nbsp;Meng Qi ,&nbsp;Chenglei Yang ,&nbsp;Wei Gai","doi":"10.1016/j.cagd.2024.102316","DOIUrl":null,"url":null,"abstract":"<div><p>In motion planning, two-dimensional (2D) splinegons are typically used to represent the contours of 2D objects. In general, a 2D splinegon must be pre-decomposed to support rapid queries of the shortest paths or visibility. Herein, we propose a new region decomposition strategy, known as the Voronoi-based decomposition (VBD), based on the Voronoi diagram of curved boundary-segment generators (either convex or concave). The number of regions in the VBD is O(<em>n</em>+<span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>). Compared with the well-established horizontal visibility decomposition (HVD), whose complexity is O(<em>n</em>+<span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), the VBD decomposition generally contains less regions because <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>≤<span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, where <em>n</em> is the number of the vertices of the input splinegon, and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are the number of inserted vertices at the boundary. We systematically discuss the usage of VBD. Based on the VBD, the shortest path tree (SPT) can be computed in linear time. Statistics show that the VBD performs faster than HVD in SPT computations. Additionally, based on the SPT, we design algorithms that can rapidly compute the visibility between two points, the visible area of a point/line-segment, and the shortest path between two points.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102316"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voronoi-based splinegon decomposition and shortest-path tree computation\",\"authors\":\"Xiyu Bao ,&nbsp;Meng Qi ,&nbsp;Chenglei Yang ,&nbsp;Wei Gai\",\"doi\":\"10.1016/j.cagd.2024.102316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In motion planning, two-dimensional (2D) splinegons are typically used to represent the contours of 2D objects. In general, a 2D splinegon must be pre-decomposed to support rapid queries of the shortest paths or visibility. Herein, we propose a new region decomposition strategy, known as the Voronoi-based decomposition (VBD), based on the Voronoi diagram of curved boundary-segment generators (either convex or concave). The number of regions in the VBD is O(<em>n</em>+<span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>). Compared with the well-established horizontal visibility decomposition (HVD), whose complexity is O(<em>n</em>+<span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), the VBD decomposition generally contains less regions because <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>≤<span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, where <em>n</em> is the number of the vertices of the input splinegon, and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are the number of inserted vertices at the boundary. We systematically discuss the usage of VBD. Based on the VBD, the shortest path tree (SPT) can be computed in linear time. Statistics show that the VBD performs faster than HVD in SPT computations. Additionally, based on the SPT, we design algorithms that can rapidly compute the visibility between two points, the visible area of a point/line-segment, and the shortest path between two points.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"111 \",\"pages\":\"Article 102316\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839624000505\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624000505","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在运动规划中,二维(2D)分割线通常用于表示 2D 物体的轮廓。一般来说,二维线形必须经过预分解才能支持最短路径或可见性的快速查询。在此,我们提出了一种新的区域分解策略,即基于 Voronoi 的分解 (VBD),它以曲线边界段生成器(凸或凹)的 Voronoi 图为基础。VBD 中的区域数量为 O(n+c1)。与复杂度为 O(n+c2)的成熟的水平可见度分解(HVD)相比,VBD 分解通常包含较少的区域,因为 c1≤c2 其中,n 是输入分割线的顶点数,c1 和 c2 是边界上插入的顶点数。我们将系统地讨论 VBD 的用法。基于 VBD,可以在线性时间内计算出最短路径树(SPT)。统计结果表明,在 SPT 计算中,VBD 的性能比 HVD 更快。此外,基于 SPT,我们设计了能快速计算两点间可见度、点/线段可见区域和两点间最短路径的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Voronoi-based splinegon decomposition and shortest-path tree computation

Voronoi-based splinegon decomposition and shortest-path tree computation

In motion planning, two-dimensional (2D) splinegons are typically used to represent the contours of 2D objects. In general, a 2D splinegon must be pre-decomposed to support rapid queries of the shortest paths or visibility. Herein, we propose a new region decomposition strategy, known as the Voronoi-based decomposition (VBD), based on the Voronoi diagram of curved boundary-segment generators (either convex or concave). The number of regions in the VBD is O(n+c1). Compared with the well-established horizontal visibility decomposition (HVD), whose complexity is O(n+c2), the VBD decomposition generally contains less regions because c1c2, where n is the number of the vertices of the input splinegon, and c1 and c2 are the number of inserted vertices at the boundary. We systematically discuss the usage of VBD. Based on the VBD, the shortest path tree (SPT) can be computed in linear time. Statistics show that the VBD performs faster than HVD in SPT computations. Additionally, based on the SPT, we design algorithms that can rapidly compute the visibility between two points, the visible area of a point/line-segment, and the shortest path between two points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Aided Geometric Design
Computer Aided Geometric Design 工程技术-计算机:软件工程
CiteScore
3.50
自引率
13.30%
发文量
57
审稿时长
60 days
期刊介绍: The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following: -Mathematical and Geometric Foundations- Curve, Surface, and Volume generation- CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision- Industrial, medical, and scientific applications. The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信