粘弹性流体薄膜在倾斜或垂直面上流动的动力学原理

IF 2.7 2区 工程技术 Q2 MECHANICS
S. Dholey, S. Gorai
{"title":"粘弹性流体薄膜在倾斜或垂直面上流动的动力学原理","authors":"S. Dholey,&nbsp;S. Gorai","doi":"10.1016/j.jnnfm.2024.105237","DOIUrl":null,"url":null,"abstract":"<div><p>The stability characteristics of a thin film of viscoelastic (Walters’ <span><math><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> model) fluid flowing down an inclined or vertical plane are analyzed under the combined influence of gravity and surface tension. A nonlinear free surface evolution equation is obtained by using the momentum-integral method. Normal mode technique and multiple scales method are used to obtain the results of linear and nonlinear stability analysis of this problem. The linear stability analysis gives the critical condition and critical wave number <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> which include the viscoelastic parameter <span><math><mi>Γ</mi></math></span>, angle of inclination of the plane <span><math><mi>θ</mi></math></span>, Reynolds number <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> and Weber number <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>. The weakly nonlinear stability analysis that is based on the second Landau constant <span><math><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, reveals the condition for the existence of explosive unstable and supercritical stable zone along with the other two (unconditional stable and subcritical unstable) flow zones of this problem which is <span><math><mrow><mn>3</mn><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mn>3</mn><mi>Γ</mi><mo>)</mo></mrow><mi>R</mi><mi>e</mi><mo>−</mo><mn>3</mn><mi>c</mi><mi>o</mi><mi>t</mi><mi>θ</mi><mo>−</mo><mn>4</mn><mi>R</mi><mi>e</mi><mi>W</mi><mi>e</mi><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> = 0. It is found that all the four distinct flow zones of this problem exist in <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>-<span><math><mi>k</mi></math></span>-, <span><math><mi>θ</mi></math></span>-<span><math><mi>k</mi></math></span>- and <span><math><mi>Γ</mi></math></span>-<span><math><mi>k</mi></math></span>-plane after the critical value of <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>,</mo></mrow></math></span> <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>, respectively. A novel result of this analysis is that the film flow is stable (unstable) for a negative (positive) value of <span><math><mi>Γ</mi></math></span> irrespective of the values of <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> and <span><math><mi>θ</mi></math></span>, as for example, a solution of polyisobutylene in cetane, compared with the viscous <span><math><mrow><mo>(</mo><mi>Γ</mi><mo>=</mo><mn>0</mn><mo>)</mo></mrow></math></span> film flow case. Finally, we scrutinize the effect of <span><math><mi>Γ</mi></math></span> on the threshold amplitude and nonlinear wave speed by depicting some numerical examples in supercritical stable as well as subcritical unstable zone of this problem.</p></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"329 ","pages":"Article 105237"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a thin film of viscoelastic fluid flowing down an inclined or vertical plane\",\"authors\":\"S. Dholey,&nbsp;S. Gorai\",\"doi\":\"10.1016/j.jnnfm.2024.105237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The stability characteristics of a thin film of viscoelastic (Walters’ <span><math><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> model) fluid flowing down an inclined or vertical plane are analyzed under the combined influence of gravity and surface tension. A nonlinear free surface evolution equation is obtained by using the momentum-integral method. Normal mode technique and multiple scales method are used to obtain the results of linear and nonlinear stability analysis of this problem. The linear stability analysis gives the critical condition and critical wave number <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> which include the viscoelastic parameter <span><math><mi>Γ</mi></math></span>, angle of inclination of the plane <span><math><mi>θ</mi></math></span>, Reynolds number <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> and Weber number <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>. The weakly nonlinear stability analysis that is based on the second Landau constant <span><math><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, reveals the condition for the existence of explosive unstable and supercritical stable zone along with the other two (unconditional stable and subcritical unstable) flow zones of this problem which is <span><math><mrow><mn>3</mn><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mn>3</mn><mi>Γ</mi><mo>)</mo></mrow><mi>R</mi><mi>e</mi><mo>−</mo><mn>3</mn><mi>c</mi><mi>o</mi><mi>t</mi><mi>θ</mi><mo>−</mo><mn>4</mn><mi>R</mi><mi>e</mi><mi>W</mi><mi>e</mi><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> = 0. It is found that all the four distinct flow zones of this problem exist in <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>-<span><math><mi>k</mi></math></span>-, <span><math><mi>θ</mi></math></span>-<span><math><mi>k</mi></math></span>- and <span><math><mi>Γ</mi></math></span>-<span><math><mi>k</mi></math></span>-plane after the critical value of <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>,</mo></mrow></math></span> <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>, respectively. A novel result of this analysis is that the film flow is stable (unstable) for a negative (positive) value of <span><math><mi>Γ</mi></math></span> irrespective of the values of <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> and <span><math><mi>θ</mi></math></span>, as for example, a solution of polyisobutylene in cetane, compared with the viscous <span><math><mrow><mo>(</mo><mi>Γ</mi><mo>=</mo><mn>0</mn><mo>)</mo></mrow></math></span> film flow case. Finally, we scrutinize the effect of <span><math><mi>Γ</mi></math></span> on the threshold amplitude and nonlinear wave speed by depicting some numerical examples in supercritical stable as well as subcritical unstable zone of this problem.</p></div>\",\"PeriodicalId\":54782,\"journal\":{\"name\":\"Journal of Non-Newtonian Fluid Mechanics\",\"volume\":\"329 \",\"pages\":\"Article 105237\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Newtonian Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377025724000533\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724000533","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

分析了在重力和表面张力的共同作用下,粘弹性(Walters'B′模型)流体薄膜沿倾斜面或垂直面流动的稳定性特征。利用动量积分法得到了非线性自由表面演化方程。利用法向模态技术和多尺度法获得了该问题的线性和非线性稳定性分析结果。线性稳定性分析给出了临界条件和临界波数 kc,其中包括粘弹性参数 Γ、平面倾角 θ、雷诺数 Re 和韦伯数 We。基于第二朗道常数 J2 的弱非线性稳定性分析揭示了该问题的爆炸不稳定区和超临界稳定区以及其他两个(无条件稳定区和亚临界不稳定区)流动区的存在条件,即 3(1+3Γ)Re-3cotθ-4ReWek2 = 0。研究发现,在 Rec、θc 和 Γc 临界值之后,该问题的四个不同流动区域都分别存在于 Re-k、θ-k 和 Γ-k 平面上。这项分析的一个新结果是,与粘性(Γ=0)薄膜流动情况相比,无论 Re 和 θ 的值如何,当 Γ 为负值(正值)时,薄膜流动都是稳定(不稳定)的,例如聚异丁烯在十六烷中的溶液。最后,我们通过描述该问题超临界稳定区和亚临界不稳定区的一些数值示例,仔细研究了 Γ 对阈值振幅和非线性波速的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of a thin film of viscoelastic fluid flowing down an inclined or vertical plane

The stability characteristics of a thin film of viscoelastic (Walters’ B model) fluid flowing down an inclined or vertical plane are analyzed under the combined influence of gravity and surface tension. A nonlinear free surface evolution equation is obtained by using the momentum-integral method. Normal mode technique and multiple scales method are used to obtain the results of linear and nonlinear stability analysis of this problem. The linear stability analysis gives the critical condition and critical wave number kc which include the viscoelastic parameter Γ, angle of inclination of the plane θ, Reynolds number Re and Weber number We. The weakly nonlinear stability analysis that is based on the second Landau constant J2, reveals the condition for the existence of explosive unstable and supercritical stable zone along with the other two (unconditional stable and subcritical unstable) flow zones of this problem which is 3(1+3Γ)Re3cotθ4ReWek2 = 0. It is found that all the four distinct flow zones of this problem exist in Re-k-, θ-k- and Γ-k-plane after the critical value of Rec, θc and Γc, respectively. A novel result of this analysis is that the film flow is stable (unstable) for a negative (positive) value of Γ irrespective of the values of Re and θ, as for example, a solution of polyisobutylene in cetane, compared with the viscous (Γ=0) film flow case. Finally, we scrutinize the effect of Γ on the threshold amplitude and nonlinear wave speed by depicting some numerical examples in supercritical stable as well as subcritical unstable zone of this problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
19.40%
发文量
109
审稿时长
61 days
期刊介绍: The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest. Subjects considered suitable for the journal include the following (not necessarily in order of importance): Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids, Multiphase flows involving complex fluids, Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena, Novel flow situations that suggest the need for further theoretical study, Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信