R. Zarrella, A. Manna, S. Amaducci, M. Bacak, A. Casanovas, S. Colombi, C. D'Orazio, F. García-Infantes, N. Malekinezhad, M. Marafini, C. Massimi, A. Mengoni, A. Musumarra, N. Patronis, J. Pavón-Rodriguez, M. Pellegriti, R. Spighi, E. Stamati, M. Villa
{"title":"用于 n_TOF 设施核碎裂测量的 FOOT 中子探测器的特性分析","authors":"R. Zarrella, A. Manna, S. Amaducci, M. Bacak, A. Casanovas, S. Colombi, C. D'Orazio, F. García-Infantes, N. Malekinezhad, M. Marafini, C. Massimi, A. Mengoni, A. Musumarra, N. Patronis, J. Pavón-Rodriguez, M. Pellegriti, R. Spighi, E. Stamati, M. Villa","doi":"10.1088/1748-0221/19/04/c04006","DOIUrl":null,"url":null,"abstract":"\n FOOT (FragmentatiOn Of Target) is an applied nuclear physics experiment with the aim of performing high precision cross section measurements for fragmentation reactions of interest in hadrontherapy and radiation protection in space. The physics program of the experiment foresees a set of measurements with light ion beams, such as C and O, in the energy range of 100–800 MeV/u interacting with tissue-like and shielding material targets. The setup was initially conceived for the detection of charged fragments and, in 2021, the Collaboration started the study of possible solutions for neutron detection. Two detection systems have been proposed: one based on BC-501A liquid scintillators with neutron/γ discrimination capabilities and a system based on BGO crystals operated in phoswich mode. In 2022, a dedicated data acquisition campaign was carried out at the n_TOF facility at CERN to evaluate the capabilities of the two systems. First, the neutron/γ discrimination efficiency of the BC-501A system was studied using radioactive sources. Then, the two systems were placed in the n_TOF experimental area to study their neutron detection efficiency under a well characterized neutron beam. In this work, the first preliminary results concerning the characterization of the two possible neutron detectors of FOOT are presented.","PeriodicalId":507814,"journal":{"name":"Journal of Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the FOOT neutron detectors for nuclear fragmentation measurements at the n_TOF facility\",\"authors\":\"R. Zarrella, A. Manna, S. Amaducci, M. Bacak, A. Casanovas, S. Colombi, C. D'Orazio, F. García-Infantes, N. Malekinezhad, M. Marafini, C. Massimi, A. Mengoni, A. Musumarra, N. Patronis, J. Pavón-Rodriguez, M. Pellegriti, R. Spighi, E. Stamati, M. Villa\",\"doi\":\"10.1088/1748-0221/19/04/c04006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n FOOT (FragmentatiOn Of Target) is an applied nuclear physics experiment with the aim of performing high precision cross section measurements for fragmentation reactions of interest in hadrontherapy and radiation protection in space. The physics program of the experiment foresees a set of measurements with light ion beams, such as C and O, in the energy range of 100–800 MeV/u interacting with tissue-like and shielding material targets. The setup was initially conceived for the detection of charged fragments and, in 2021, the Collaboration started the study of possible solutions for neutron detection. Two detection systems have been proposed: one based on BC-501A liquid scintillators with neutron/γ discrimination capabilities and a system based on BGO crystals operated in phoswich mode. In 2022, a dedicated data acquisition campaign was carried out at the n_TOF facility at CERN to evaluate the capabilities of the two systems. First, the neutron/γ discrimination efficiency of the BC-501A system was studied using radioactive sources. Then, the two systems were placed in the n_TOF experimental area to study their neutron detection efficiency under a well characterized neutron beam. In this work, the first preliminary results concerning the characterization of the two possible neutron detectors of FOOT are presented.\",\"PeriodicalId\":507814,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/19/04/c04006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/19/04/c04006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of the FOOT neutron detectors for nuclear fragmentation measurements at the n_TOF facility
FOOT (FragmentatiOn Of Target) is an applied nuclear physics experiment with the aim of performing high precision cross section measurements for fragmentation reactions of interest in hadrontherapy and radiation protection in space. The physics program of the experiment foresees a set of measurements with light ion beams, such as C and O, in the energy range of 100–800 MeV/u interacting with tissue-like and shielding material targets. The setup was initially conceived for the detection of charged fragments and, in 2021, the Collaboration started the study of possible solutions for neutron detection. Two detection systems have been proposed: one based on BC-501A liquid scintillators with neutron/γ discrimination capabilities and a system based on BGO crystals operated in phoswich mode. In 2022, a dedicated data acquisition campaign was carried out at the n_TOF facility at CERN to evaluate the capabilities of the two systems. First, the neutron/γ discrimination efficiency of the BC-501A system was studied using radioactive sources. Then, the two systems were placed in the n_TOF experimental area to study their neutron detection efficiency under a well characterized neutron beam. In this work, the first preliminary results concerning the characterization of the two possible neutron detectors of FOOT are presented.