捕捉闪烁蜡烛的三维秘密:基于数字全息显微技术

Shaohan Qin
{"title":"捕捉闪烁蜡烛的三维秘密:基于数字全息显微技术","authors":"Shaohan Qin","doi":"10.54254/2753-8818/34/20241138","DOIUrl":null,"url":null,"abstract":"The temperature distribution of flames has long been a fascinating topic of study. To quantitatively analyze the temperature field of flames, traditional methods include infrared devices, thermocouples and thermometer. However, these conventional techniques provide only cross-sectional snapshots while lacking the capability to offer real-time 3D temperature field visualization. This paper proposed a different approach to measure the 3D temperature field with accurate data and details by applying the digital holography. First, based on digital holography and the equations of thermodynamics, we derived the equation between the phase difference and temperature. Then we built a transmission off-axis digital holographic microscopy in the experimental section to perform static and dynamic flame measurements. To calibrate the actual temperatures and test our theorys accuracy, we also took photographs of the flames as a standard reference using an infrared thermal imager. Finally, we obtained a quantitative 3D distribution of the temperature field and a qualitative dynamic process of 3D temperature field. Our results show that the temperature decreases from the center of the flame and follows a general pattern. The comparison with infrared imaging shows that digital holography offers an accurate measurement of the temperature.","PeriodicalId":489336,"journal":{"name":"Theoretical and Natural Science","volume":"17 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capturing the 3D secrets of a flickering candle: Based on digital holographic microscopy\",\"authors\":\"Shaohan Qin\",\"doi\":\"10.54254/2753-8818/34/20241138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The temperature distribution of flames has long been a fascinating topic of study. To quantitatively analyze the temperature field of flames, traditional methods include infrared devices, thermocouples and thermometer. However, these conventional techniques provide only cross-sectional snapshots while lacking the capability to offer real-time 3D temperature field visualization. This paper proposed a different approach to measure the 3D temperature field with accurate data and details by applying the digital holography. First, based on digital holography and the equations of thermodynamics, we derived the equation between the phase difference and temperature. Then we built a transmission off-axis digital holographic microscopy in the experimental section to perform static and dynamic flame measurements. To calibrate the actual temperatures and test our theorys accuracy, we also took photographs of the flames as a standard reference using an infrared thermal imager. Finally, we obtained a quantitative 3D distribution of the temperature field and a qualitative dynamic process of 3D temperature field. Our results show that the temperature decreases from the center of the flame and follows a general pattern. The comparison with infrared imaging shows that digital holography offers an accurate measurement of the temperature.\",\"PeriodicalId\":489336,\"journal\":{\"name\":\"Theoretical and Natural Science\",\"volume\":\"17 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Natural Science\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.54254/2753-8818/34/20241138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Natural Science","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.54254/2753-8818/34/20241138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

火焰的温度分布一直是一个引人入胜的研究课题。要定量分析火焰的温度场,传统方法包括红外装置、热电偶和温度计。然而,这些传统技术只能提供横截面快照,无法提供实时三维温度场可视化。本文提出了一种不同的方法,通过应用数字全息技术测量三维温度场的精确数据和细节。首先,基于数字全息技术和热力学方程,我们推导出了相位差与温度之间的方程。然后,我们在实验部分建立了透射离轴数字全息显微镜,进行静态和动态火焰测量。为了校准实际温度并检验我们理论的准确性,我们还使用红外热成像仪拍摄了火焰照片作为标准参考。最后,我们获得了定量的三维温度场分布和定性的三维温度场动态过程。我们的结果表明,温度从火焰中心开始下降,并遵循一般规律。与红外成像的比较表明,数字全息技术可以精确测量温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capturing the 3D secrets of a flickering candle: Based on digital holographic microscopy
The temperature distribution of flames has long been a fascinating topic of study. To quantitatively analyze the temperature field of flames, traditional methods include infrared devices, thermocouples and thermometer. However, these conventional techniques provide only cross-sectional snapshots while lacking the capability to offer real-time 3D temperature field visualization. This paper proposed a different approach to measure the 3D temperature field with accurate data and details by applying the digital holography. First, based on digital holography and the equations of thermodynamics, we derived the equation between the phase difference and temperature. Then we built a transmission off-axis digital holographic microscopy in the experimental section to perform static and dynamic flame measurements. To calibrate the actual temperatures and test our theorys accuracy, we also took photographs of the flames as a standard reference using an infrared thermal imager. Finally, we obtained a quantitative 3D distribution of the temperature field and a qualitative dynamic process of 3D temperature field. Our results show that the temperature decreases from the center of the flame and follows a general pattern. The comparison with infrared imaging shows that digital holography offers an accurate measurement of the temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信