{"title":"人工轴突方程的新 \"类克 \"解法","authors":"M. A. Knyazev, Т. A. Klimovich","doi":"10.29235/1561-2430-2024-60-1-29-33","DOIUrl":null,"url":null,"abstract":"In the paper a (1 + 1)-dimension equation of motion for the artificial axon is considered. The artificial axon is a dynamical structure like a neuron. They are widely used in biophysics, for example, in studying the physiological processes. A topological non-trivial solution of one-kink type for this equation is constructed in an analytical form. The modified direct Hirota method for solving the nonlinear partial derivatives equations is applied. The special cases are considered for different voltages on the contacts of axon. ","PeriodicalId":516297,"journal":{"name":"Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series","volume":"101 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New kink-type solution of the equation for artificial axon\",\"authors\":\"M. A. Knyazev, Т. A. Klimovich\",\"doi\":\"10.29235/1561-2430-2024-60-1-29-33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper a (1 + 1)-dimension equation of motion for the artificial axon is considered. The artificial axon is a dynamical structure like a neuron. They are widely used in biophysics, for example, in studying the physiological processes. A topological non-trivial solution of one-kink type for this equation is constructed in an analytical form. The modified direct Hirota method for solving the nonlinear partial derivatives equations is applied. The special cases are considered for different voltages on the contacts of axon. \",\"PeriodicalId\":516297,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series\",\"volume\":\"101 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-2430-2024-60-1-29-33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-2430-2024-60-1-29-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New kink-type solution of the equation for artificial axon
In the paper a (1 + 1)-dimension equation of motion for the artificial axon is considered. The artificial axon is a dynamical structure like a neuron. They are widely used in biophysics, for example, in studying the physiological processes. A topological non-trivial solution of one-kink type for this equation is constructed in an analytical form. The modified direct Hirota method for solving the nonlinear partial derivatives equations is applied. The special cases are considered for different voltages on the contacts of axon.