Dong He, Xiaoyue Bai, Hanzhong Tao, Yanna Li, Shuo Lin
{"title":"带有热管热交换器的固定床 N2O 分解反应器的概念设计","authors":"Dong He, Xiaoyue Bai, Hanzhong Tao, Yanna Li, Shuo Lin","doi":"10.1515/ijcre-2023-0227","DOIUrl":null,"url":null,"abstract":"\n This paper introduces a novel process for decomposing N2O through interstage cooling utilizing a heat pipe heat exchanger. The reactor design involves segmenting the fixed bed reactor into multiple layers and integrating heat pipe heat exchangers between these layers to efficiently dissipate the high heat generated by the upper fixed bed reactor. This innovative approach facilitates the direct decomposition of N2O feedgas with high concentrations, obviating the need for gas dilution. The study conducted in this paper employed Fluent and ASPEN PLUS to investigate N2O decomposition with interstage cooling using heat pipe heat exchangers, as well as decomposition after dilution. A comparison between the two methods was made based on catalyst dosage, temperature uniformity, and reactor energy consumption. The results demonstrate that the proposed method for N2O decomposition via interstage cooling with a heat pipe heat exchanger is a viable option, offering the desired temperature control and enhanced efficiency. Furthermore, this reactor design effectively reduces both catalyst usage and energy consumption, providing substantial advantages over traditional approaches.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conceptual design of a fixed bed N2O decomposition reactor with a heat pipe heat exchanger\",\"authors\":\"Dong He, Xiaoyue Bai, Hanzhong Tao, Yanna Li, Shuo Lin\",\"doi\":\"10.1515/ijcre-2023-0227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper introduces a novel process for decomposing N2O through interstage cooling utilizing a heat pipe heat exchanger. The reactor design involves segmenting the fixed bed reactor into multiple layers and integrating heat pipe heat exchangers between these layers to efficiently dissipate the high heat generated by the upper fixed bed reactor. This innovative approach facilitates the direct decomposition of N2O feedgas with high concentrations, obviating the need for gas dilution. The study conducted in this paper employed Fluent and ASPEN PLUS to investigate N2O decomposition with interstage cooling using heat pipe heat exchangers, as well as decomposition after dilution. A comparison between the two methods was made based on catalyst dosage, temperature uniformity, and reactor energy consumption. The results demonstrate that the proposed method for N2O decomposition via interstage cooling with a heat pipe heat exchanger is a viable option, offering the desired temperature control and enhanced efficiency. Furthermore, this reactor design effectively reduces both catalyst usage and energy consumption, providing substantial advantages over traditional approaches.\",\"PeriodicalId\":51069,\"journal\":{\"name\":\"International Journal of Chemical Reactor Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Reactor Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijcre-2023-0227\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2023-0227","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Conceptual design of a fixed bed N2O decomposition reactor with a heat pipe heat exchanger
This paper introduces a novel process for decomposing N2O through interstage cooling utilizing a heat pipe heat exchanger. The reactor design involves segmenting the fixed bed reactor into multiple layers and integrating heat pipe heat exchangers between these layers to efficiently dissipate the high heat generated by the upper fixed bed reactor. This innovative approach facilitates the direct decomposition of N2O feedgas with high concentrations, obviating the need for gas dilution. The study conducted in this paper employed Fluent and ASPEN PLUS to investigate N2O decomposition with interstage cooling using heat pipe heat exchangers, as well as decomposition after dilution. A comparison between the two methods was made based on catalyst dosage, temperature uniformity, and reactor energy consumption. The results demonstrate that the proposed method for N2O decomposition via interstage cooling with a heat pipe heat exchanger is a viable option, offering the desired temperature control and enhanced efficiency. Furthermore, this reactor design effectively reduces both catalyst usage and energy consumption, providing substantial advantages over traditional approaches.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.